刷题首页
题库
高中数学
题干
已知椭圆
的左右焦点分别为
,直线
经过椭圆的右焦点与椭圆交于
两点,且
.
(I)求直线
的方程;
(II)已知过右焦点
的动直线
与椭圆
交于
不同两点,是否存在
轴上一定点
,使
?(
为坐标原点)若存在,求出点
的坐标;若不存在说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-08-25 04:46:50
答案(点此获取答案解析)
同类题1
已知中心在原点
,焦点在
轴上的椭圆
过点
,离心率为
.
(1)求椭圆
的方程;
(2)设过定点
的直线
与椭圆
交于不同的两点
,且
,求直线
的斜率
的取值范围;
同类题2
已知椭圆:
的左、右点分别为
点
在椭圆上,且
(1)求椭圆
的方程;
(2)过点(1,0)作斜率为
的直线
交椭圆
于M、N两点,若
求直线
的方程;
(3)点P、Q为椭圆上的两个动点,
为坐标原点,若直线
的斜率之积为
求证:
为定值.
同类题3
直线
与椭圆
相交于
,
两点,
为坐标原点.
(Ⅰ)当点
的坐标为
,且四边形
为菱形时,求
的长;
(Ⅱ)当点
在
上且不是
的顶点时,证明:四边形
不可能为菱形.
同类题4
已知椭圆
的离心率为
,以原点为圆心,椭圆的短半轴为长为半径的圆与直线
相切,过点
的直线
与椭圆
相交于
两点
.
(1)求椭圆
的方程;
(2)若原点
满足
,求直线
的斜率
的取值范围
.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
直线与椭圆的位置关系
根据直线与椭圆的位置关系求参数或范围
椭圆中存在定点满足某条件问题