- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
椭圆
:
,点
,动直线
与椭圆
交于
,
两点,已知直线
的斜率为
,直线
的斜率为
,且
,
的乘积为
.
(Ⅰ)若
,求实数
的值;
(Ⅱ)若
,求证:直线
过定点.














(Ⅰ)若


(Ⅱ)若


已知点
,点
是圆
上的任意一点,设
为该圆的圆心,并且线段
的垂直平分线与直线
交于点
.
(
)求点
的轨迹方程.
(
)已知
,
两点的坐标分别为
,
,点
是直线
上的一个动点,且直线
,
分别交(
)中点
的轨迹于
,
两点(
,
,
,
四点互不相同),证明:直线
恒过一定点,并求出该定点坐标.







(


(


















椭圆
的两个焦点
,
,设
,
分别是椭圆
的上、下顶点,且四边形
的面积为
,其内切圆周长为
.
(1)求椭圆
的方程;
(2)当
时,
,
为椭圆
上的动点,且
,试问:直线
是否恒过一定点?若是,求出此定点坐标,若不是,请说明理由.









(1)求椭圆

(2)当






已知椭圆
:
的上顶点为A,以A为圆心,椭圆的长半轴为半径的圆与y轴的交点分别为
、
.
(1)求椭圆
的方程;
(2)设不经过点A的直线
与椭圆
交于P、Q两点,且
,试探究直线
是否过定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.




(1)求椭圆

(2)设不经过点A的直线




如图,已知椭圆
的左、右焦点分别为
、
,点
为椭圆
上任意一点,
关于原点
的对称点为
,有
,且
的最大值
.

(1)求椭圆
的标准方程;
(2)若
是
关于
轴的对称点,设点
,连接
与椭圆
相交于点
,问直线
与
轴是否交于一定点.如果是,求出该定点坐标;如果不是,说明理由.












(1)求椭圆

(2)若









已知椭圆
的离心率
,且椭圆过点
.
(I)求椭圆
的标准方程;
(II)已知点
为椭圆
的下顶点,
为椭圆
上与
不重合的两点,若直线
与直线
的斜率之和为
,试判断是否存在定点
,使得直线
恒过点
,若存在,求出点
的坐标;若不存在,请说明理由.



(I)求椭圆

(II)已知点












已知椭圆
(
)的左焦点为
,点
为椭圆
上任意一点,且
的最小值为
,离心率为
.
(1)求椭圆
的方程;
(2)设O为坐标原点,若动直线
与椭圆
交于不同两点
、
(
、
都在
轴上方),且
.
(i)当
为椭圆与
轴正半轴的交点时,求直线
的方程;
(ii)对于动直线
,是否存在一个定点,无论
如何变化,直线
总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.








(1)求椭圆

(2)设O为坐标原点,若动直线








(i)当



(ii)对于动直线



已知椭圆
的右焦点为
,坐标原点为
.椭圆
的动弦
过右焦点
且不垂直于坐标轴,
的中点为
,过
且垂直于线段
的直线交射线
于点
(I)证明:点
在直线
上;
(Ⅱ)当四边形
是平行四边形时,求
的面积.












(I)证明:点


(Ⅱ)当四边形


设O为坐标原点,动点M在椭圆C:
上,该椭圆的左顶点A到直线
的距离为
.
求椭圆C的标准方程;
若线段MN平行于y轴,满足
,动点P在直线
上,满足
证明:过点N且垂直于OP的直线过椭圆C的右焦点F.








已知椭圆
中心在原点
,焦点在坐标轴上,直线
与椭圆
在第一象限内的交点是
,点
在
轴上的射影恰好是椭圆
的右焦点
,椭圆
另一个焦点是
,且
.
(1)求椭圆
的方程;
(2)设过点
的直线
与
交于点
(
不在
轴上),垂直于
的直线与
交于点
,与
轴交于点
.若
,且
,求直线
的方程.












(1)求椭圆

(2)设过点













