刷题首页
题库
高中数学
题干
已知点
,点
是圆
上的任意一点,设
为该圆的圆心,并且线段
的垂直平分线与直线
交于点
.
(
)求点
的轨迹方程.
(
)已知
,
两点的坐标分别为
,
,点
是直线
上的一个动点,且直线
,
分别交(
)中点
的轨迹于
,
两点(
,
,
,
四点互不相同),证明:直线
恒过一定点,并求出该定点坐标.
上一题
下一题
0.99难度 解答题 更新时间:2017-06-02 12:59:02
答案(点此获取答案解析)
同类题1
已知椭圆
:
的右焦点为
,过点
的直线(不与
轴重合)与椭圆
相交于
,
两点,直线
:
与
轴相交于点
,过点
作
,垂足为
A.
(1)求四边形
(
为坐标原点)面积的取值范围;
(2)证明直线
过定点
,并求出点
的坐标.
同类题2
如图,椭圆
:
的离心率为
,设
,
分别为椭圆
的右顶点,下顶点,
的面积为1.
(1)求椭圆
的方程;
(2)已知不经过点
的直线
:
交椭圆于
,
两点,线段
的中点为
,若
,求证:直线
过定点.
同类题3
设椭圆
的上顶点为
A
,右顶点为
B
,离心率为
,
.
(1)求椭圆的方程;
(2)不经过点
A
的直线
与椭圆交于
M
、
N
两点,若以
MN
为直径的圆经过点
A
,求证:直线
过定点,并求出该定点的坐标.
同类题4
已知椭圆
的离心率为
,长轴长为
.
(1)求椭圆
的方程;
(2)点
是以长轴为直径的圆
上一点,圆
在点
处的切线交直线
于点
,求证:过点
且垂直于直线
的直线
过椭圆
的右焦点.
同类题5
设曲线
是焦点在
轴上的椭圆,两个焦点分别是是
,
,且
,
是曲线上的任意一点,且点
到两个焦点距离之和为4.
(1)求
的标准方程;
(2)设
的左顶点为
,若直线
:
与曲线
交于两点
,
(
,
不是左右顶点),且满足
,求证:直线
恒过定点,并求出该定点的坐标.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的直线过定点问题