刷题首页
题库
高中数学
题干
已知椭圆
(a>b>0)经过点
,且离心率为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知A(0,b),B(a,0),点P是椭圆C上位于第三象限的动点,直线AP、BP分别将x轴、y轴于点M、N,求证:|AN|•|BM|为定值.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-06 03:44:14
答案(点此获取答案解析)
同类题1
已知椭圆E:
的离心率
,并且经过定点
(1)求椭圆E 的方程;
(2)问是否存在直线y=-x+m,使直线与椭圆交于A, B 两点,满足
,若存在求m 值,若不存在说明理由.
同类题2
在平面直角坐标系
中,椭圆E:
(a>0,b>0)经过点A(
,
),且点F(0,-1)为其一个焦点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E与y轴的两个交点为A
1
,A
2
,不在y轴上的动点P在直线y=b
2
上运动,直线PA
1
,PA
2
分别与椭圆E交于点M,N,证明:直线MN通过一个定点,且△FMN的周长为定值.
同类题3
设椭圆
:
的左,右焦点分别为
,
,其离心率为
,过
的直线
与
C
交于
两点,且
的周长为
.
(1)求椭圆
的方程;
(2)设椭圆
的上顶点为
,证明:当
的斜率为
时,点
在以
为直径的圆上.
同类题4
已知椭圆
的焦点和上顶点分别为
我们称
为椭圆
C
的“特征三角形”,如果两个椭圆的特征三角形是相似三角形,那么称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比,已知椭圆
的一个焦点为
且椭圆上的任意一点到两焦点的距离之和为4.
(1)若椭圆
与椭圆
相似,且相似比为2,求椭圆
的方程;
(2)如图,直线
与两个“相似椭圆”
和
分别交于点
A
、
B
和点
C
、
D
,证明:
同类题5
已知椭圆的焦点在
轴上,右焦点到短轴的上端点的距离为4,右焦点到左顶点的距离为6.则椭圆的标准方程是( )
A.
B.
C.
D.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据直线与椭圆的位置关系求参数或范围