刷题首页
题库
高中数学
题干
已知A、B分别是椭圆
的左、右顶点,P为椭圆C的下顶点,F为其右焦点
点M是椭圆C上异于A、B的任一动点,过点A作直线
轴
以线段AF为直径的圆交直线AM于点A、N,连接FN交直线l于点
点G的坐标为
,且
,椭圆C的离心率为
.
求椭圆C的方程;
试问在x轴上是否存在一个定点T,使得直线MH必过该定点T?若存在,求出点T的坐标,若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-04-07 10:48:06
答案(点此获取答案解析)
同类题1
已知椭圆
经过点
,且两个焦点
的坐标依次为
和
.
(1)求椭圆
的标准方程;
(2)设
是椭圆
上的两个动点,
为坐标原点,直线
的斜率为
,直线
的斜率为
,若
,证明:直线
与以原点为圆心的定圆相切,并写出此定圆的标准方程.
同类题2
某学校决定在主干道旁边挖一个半椭圆形状的小湖,如图所示,AB=4,O为AB的中点,椭圆的焦点
P
在对称轴
OD
上,
M
、
N
在椭圆上,
MN
平行
AB
交
OD
与
G
,且
G
在
P
的右侧,△
MNP
为灯光区,用于美化环境.
(1)若学校的另一条道路
EF
满足
OE
=3,tan∠
OEF
=2,为确保道路安全,要求椭圆上任意一点到道路
EF
的距离都不小于
,求半椭圆形的小湖的最大面积:(椭圆
(
)的面积为
)
(2)若椭圆的离心率为
,要求灯光区的周长不小于
,求
PG
的取值范围.
同类题3
已知椭圆
(
)的左、右焦点分别为
、
,设点
,在
中,
,周长为
.
(1)求椭圆
的方程;
(2)设不经过点
的直线
与椭圆
相交于
、
两点,若直线
与
的斜率之和为
,求证:直线
过定点,并求出该定点的坐标;
(3)记第(2)问所求的定点为
,点
为椭圆
上的一个动点,试根据
面积
的不同取值范围,讨论
存在的个数,并说明理由.
同类题4
已知椭圆
与
x
轴负半轴交于
,离心率
.
(1)求椭圆
C
的方程;
(2)设直线
与椭圆
C
交于
两点,连接
AM
,
AN
并延长交直线
x
=4于
两点,若
,直线
MN
是否恒过定点,如果是,请求出定点坐标,如果不是,请说明理由.
同类题5
已知椭圆
的左、右焦点为
,
,左、右顶点为
,
,过
的直线
交
于
,
两点(异于
、
),
的周长为
,且直线
与
的斜率之积为
,则
的方程为( )
A.
B.
C.
D.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据直线与椭圆的位置关系求参数或范围