- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线的定义
- + 抛物线标准方程的形式
- 根据抛物线方程求焦点或准线
- 抛物线方程的四种形式与位置特征
- 抛物线的焦半径公式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线y2 =" 2px" (p > 0)的交点为F,过
引直线l交此抛物线于A,B两点.
(Ⅰ)若直线AF的斜率为2,求直线BF的斜率;
(Ⅱ)若p=2,点M在抛物线上,且
,求t的取值范围.

(Ⅰ)若直线AF的斜率为2,求直线BF的斜率;
(Ⅱ)若p=2,点M在抛物线上,且

已知M,N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,线段MN的中点A的横坐标为
.
(1)求|MF|+|NF|的值;
(2)若p=2,直线MN与x轴交于点B,求点B的横坐标的取值范围.

(1)求|MF|+|NF|的值;
(2)若p=2,直线MN与x轴交于点B,求点B的横坐标的取值范围.
已知点
在抛物线
上,且
到抛物线焦点的距离为
. 直线
与抛物线交于
两点,且线段
的中点为
.
(Ⅰ)求直线
的方程.
(Ⅱ)点
是直线
上的动点,求
的最小值.








(Ⅰ)求直线

(Ⅱ)点



已知曲线
:
,曲线
:
,直线
与曲线
交于
,
两点,O为坐标原点.
(1)若
,求证:直线
恒过定点;
(2)若直线
与曲线
相切,求
(点P坐标为
)的取值范围.








(1)若


(2)若直线




如图,O为坐标原点,点F为抛物线C1:
的焦点,且抛物线C1上点M处的切线与圆C2:
相切于点Q.



(Ⅰ)当直线MQ的方程为
时,求抛物线C1的方程;
(Ⅱ)当正数p变化时,记S1 ,S2分别为△FMQ,△FOQ的面积,求
的最小值.





(Ⅰ)当直线MQ的方程为

(Ⅱ)当正数p变化时,记S1 ,S2分别为△FMQ,△FOQ的面积,求

已知抛物线人
的焦点为F,过点
的直线交抛物线于A,B两点,直线AF,BF分别与抛物线交于点C,D设直线AB,CD的斜率分别为
,则
等于()




A.![]() | B.![]() | C.1 | D.2 |