- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线的定义
- + 抛物线标准方程的形式
- 根据抛物线方程求焦点或准线
- 抛物线方程的四种形式与位置特征
- 抛物线的焦半径公式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知直线
与抛物线
:
交于
,
两点,且
的面积为16(
为坐标原点).
(1)求
的方程.
(2)直线
经过
的焦点
且
不与
轴垂直,
与
交于
,
两点,若线段
的垂直平分线与
轴交于点
,试问在
轴上是否存在点
,使
为定值?若存在,求该定值及
的坐标;若不存在,请说明理由.







(1)求

(2)直线
















已知抛物线
:
(
),过其焦点作斜率为1的直线
交抛物线
于
、
两点,且
.
(Ⅰ)求抛物线
的方程;
(Ⅱ)已知动圆
的圆心在抛物线
上,且过定点
,若动圆
与
轴交于
、
两点,且
,求
的最小值.








(Ⅰ)求抛物线

(Ⅱ)已知动圆









已知抛物线的对称轴为坐标轴,顶点为坐标原点,准线方程为
,直线
与抛物线相交于不同的
、
两点.
(1)求抛物线的标准方程;
(2)如果直线
过抛物线的焦点,求
的值;
(3)如果
,直线
是否过一定点,若过一定点,求出该定点;若不过一定点,试说明理由.




(1)求抛物线的标准方程;
(2)如果直线


(3)如果

