- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- + 椭圆的应用
- 椭圆与桥梁问题
- 椭圆与反光镜的设计问题
- 椭圆与声音探测问题
- 星体运行轨道问题
- 椭圆的其他应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的左、右焦点为
,离心率为
,点
在椭圆
上,且
的面积的最大值为
.
(1)求椭圆
的方程;
(2)已知直线
与椭圆
交于不同的两点
,若
在轴上存在点
得
,求实数
的取值范围.







(1)求椭圆

(2)已知直线







给出下列四个命题
①已知
为椭圆
上任意一点,
,
是椭圆的两个焦点,则
的周长是8;
②已知
是双曲线
上任意一点,
是双曲线的右焦点,则
;
③已知直线
过抛物线
的焦点
,且
与
交于
,
,
,
两点,则
;
④椭圆具有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点
,
是它的焦点,长轴长为
,焦距为
,若静放在点
的小球(小球的半径忽略不计)从点
沿直线出发则经椭圆壁反射后第一次回到点
时,小球经过的路程恰好是
.
其中正确命题的序号为__(请将所有正确命题的序号都填上)
①已知





②已知




③已知直线










④椭圆具有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点








其中正确命题的序号为__(请将所有正确命题的序号都填上)
已知椭圆
,直线
不过原点
且不平行于坐标轴,
与
有两个交点
,
,线段
的中点为
.
(Ⅰ)证明:直线
的斜率与
的斜率的乘积为定值;
(Ⅱ)若
过点
,延长线段
与
交于点
,四边形
能否为平行四边形?若能,求此时
的斜率,若不能,说明理由.









(Ⅰ)证明:直线


(Ⅱ)若







已知水平地面上有一篮球,球的中心为
,在斜平行光线的照射下,其阴影为一椭圆(如图),在平面直角坐标系中,椭圆中心O为原点,设椭圆的方程为
,篮球与地面的接触点为H,则
的长为( )





A.![]() | B.![]() | C.![]() | D.![]() |
阅读下列有关光线的入射与反射的两个事实现象:现象(1):光线经平面镜反射满足入射角与反射角相等(如图);现象(2);光线从椭圆的一个焦点出发经椭圆反射后通过另一个焦点(如图).试结合,上述事实现象完成下列问题:


(Ⅰ)有一椭圆型台球桌,长轴长为2a,短轴长为2b.将一放置于焦点处的桌球击出.经过球桌边缘的反射(假设球的反射充全符合现象(2)),后第一次返回到该焦点时所经过的路程记为S,求S的值(用a,b表示);
(Ⅱ)结论:椭圆
上任点P(x0,y0)处的切线的方程为
.记椭圆C的方程为C:
,在直线x=4上任一点M向椭圆C引切线,切点分别为A,B.求证:直线lAB恒过定点:
(Ⅲ)过点T(1,0)的直线l(直线l斜率不为0)与椭圆C:
交于P、Q两点,是否存在定点S(s,0),使得直线SP与SQ斜率之积为定值,若存在求出S坐标;若不存在,请说明理由.


(Ⅰ)有一椭圆型台球桌,长轴长为2a,短轴长为2b.将一放置于焦点处的桌球击出.经过球桌边缘的反射(假设球的反射充全符合现象(2)),后第一次返回到该焦点时所经过的路程记为S,求S的值(用a,b表示);
(Ⅱ)结论:椭圆



(Ⅲ)过点T(1,0)的直线l(直线l斜率不为0)与椭圆C:

2016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议通过,正式开始实施.如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行.若用2c1和2c2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a1和2a2分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,给出下列式子:
①a1+c1=a2+c2; ②a1-c1=a2-c2; ③c1a2>a1c2. ④
其中正确式子的序号是( )

①a1+c1=a2+c2; ②a1-c1=a2-c2; ③c1a2>a1c2. ④

其中正确式子的序号是( )

A.①③ | B.②③ | C.①④ | D.②④ |
给出以下4个命题:
① 曲线
按
平移可得曲线
;
② 若
,则使
取得最小值的最优解有无数多个;
③ 设
为两个定点,
为常数,
,则动点
的轨迹为双曲线;
④ 若椭圆的左、右焦点分别为
是该椭圆上的任意一点,延长
到点
,使
,则点
的轨迹是圆.
其中所有真命题的序号为 .
① 曲线



② 若


③ 设




④ 若椭圆的左、右焦点分别为





其中所有真命题的序号为 .