- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆与桥梁问题
- 椭圆与反光镜的设计问题
- 椭圆与声音探测问题
- + 星体运行轨道问题
- 椭圆的其他应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点
变轨进入以月球球心
为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在
点第二次变轨进入仍以
为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在
点第三次变轨进入以
为圆心的圆形轨道Ⅲ绕月飞行.已知椭圆轨道Ⅰ和Ⅱ的中心与
在同一直线上,设椭圆轨道Ⅰ和Ⅱ的长半轴长分别为
,
,半焦距分别为
,
,则以下四个关系①
,②
,③
,④
中正确的是________.
















“神舟六号”载人航天飞船的运行轨道是以地球中心为一个焦点的椭圆,设其近地点距地面n km,远地点距地面m km,地球半径为R,那么这个椭圆的焦距为________km.
浦东一模之后的“大将” 洗心革面,再也没进过网吧,开始发奋学习. 2019年春节档非常热门的电影《流浪地球》引发了他的思考:假定地球(设为质点
,地球半径忽略不计)借助原子发动机开始流浪的轨道是以木星(看作球体,其半径约为
万米)的中心
为右焦点的椭圆
. 已知地球的近木星点
(轨道上离木星表面最近的点)到木星表面的距离为
万米,远木星点
(轨道上离木星表面最远的点)到木星表面的距离为
万米.

(1)求如图给定的坐标系下椭圆
的标准方程;
(2)若地球在流浪的过程中,由
第一次逆时针流浪到与轨道中心
的距离为
万米时(其中
分别为椭圆的长半轴、短半轴的长),由于木星引力,部分原子发动机突然失去了动力,此时地球向着木星方向开始变轨(如图所示),假定地球变轨后的轨道为一条直线
,称该直线的斜率
为“变轨系数”. 求“变轨系数”
的取值范围,使地球与木星不会发生碰撞. (精确到小数点后一位)









(1)求如图给定的坐标系下椭圆

(2)若地球在流浪的过程中,由







某颗人造地球卫星的运行轨道是以地球的中心
为一个焦点的椭圆,如图所示,已知它的近地点
(离地面最近的点)距地面
千米,远地点
(离地面最远的点)距地面
千米,并且
三点在同一直线上,地球半径约为
千米,设该椭圈的长轴长、短轴长、焦距分别为
,则( )










A.![]() | B.![]() | C.![]() | D.![]() |
嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为
公里,远月点与月球表面距离为
公里.已知月球的直径为
公里,则该椭圆形轨道的离心率约为





A.![]() | B.![]() | C.![]() | D.![]() |
中国的嫦娥四号探测器,简称“四号星”,是世界首个在月球背面软着陆和巡视探测的航天器.2019年9月25日,中国科研人员利用嫦娥四号数据精确定位了嫦娥四号的着陆位置,并再现了嫦娥四号的落月过程,该成果由国际科学期刊《自然·通讯》在线发表.如图所示,

现假设“四号星”沿地月转移轨道飞向月球后,在月球附近一点
变轨进入以月球球心
为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在
点第二次变轨进入仍以
为一个焦点的椭圆轨道Ⅱ绕月飞行.若用
和
分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用
和
分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,给出下列式子:①
;②
;③
;④
.其中正确的式子的序号是( )

现假设“四号星”沿地月转移轨道飞向月球后,在月球附近一点












A.①③ | B.①④ | C.②③ | D.②④ |
2016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议通过,正式开始实施.如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行.若用
和
分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用
和
分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,给出下列式子:①
;②
;③
;④
.其中正确式子的序号是( )









A.①③ | B.①④ | C.②③ | D.②④ |