- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- + 椭圆的离心率
- 求椭圆的离心率或离心率的取值范围
- 椭圆离心率大小与椭圆圆扁的关系
- 根据离心率求椭圆的标准方程
- 相同离心率的椭圆的方程
- 由椭圆的离心率求参数的取值范围
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,已知椭圆
,点
,
分别是椭圆
的上、下顶点,点
是直线
上的一个动点(与
轴交点除外),直线
与椭圆
交于另一点
,直线
,
的斜率的乘积恒为
,则椭圆
的离心率为________.















已知椭圆
的左、右焦点分别是
,若离心率
,则称椭圆
为“黄金椭圆”.下列有三个命题:
①在黄金椭圆
中,
成等比数列;
②在黄金椭圆
中,若上顶点、右顶点分别为
,则
;
③在黄金椭圆
中,以
为顶点的菱形
的内切圆经过焦点
.
正确命题的个数是( )




①在黄金椭圆


②在黄金椭圆



③在黄金椭圆




正确命题的个数是( )
A.0 | B.1 | C.2 | D.3 |
设A,B分别为椭圆C:
(a>b>0)的右顶点和上顶点,已知椭圆C过点P(2,1),当线段AB长最小时椭圆C的离心率为_______.

在平面直角坐标系xOy中,己知椭圆C:
的左、右顶点为A,B,右焦点为F.过点A且斜率为k(
)的直线交椭圆C于另一点P.

(1)求椭圆C的离心率;
(2)若
,求
的值;
(3)设直线l:
,延长AP交直线l于点Q,线段BO的中点为E,求证:点B关于直线EF的对称点在直线PF上。



(1)求椭圆C的离心率;
(2)若


(3)设直线l:

已知
、
分别为椭圆
的左、右焦点,点
关于直线
对称的点Q在椭圆上,则椭圆的离心率为______ ;若过
且斜率为
的直线与椭圆相交于AB两点,且
,则
___ .








