- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- + 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的两个焦点为
、
,且经过
点
,一组斜率为
的直线与椭圆
都相交于不同两点
.
(1)求椭圆
的方程;
(2)证明:线段
的中点都有在同一直线
上;
(3)对于(2)中的直线
,设
与椭圆
交于两点
,试探究椭圆上使
面积为
的点
有几个?证明你的结论.(不必具体求出
点的坐标)



点




(1)求椭圆

(2)证明:线段


(3)对于(2)中的直线








已知椭圆
和抛物线
,在
,
上各取两个点,这四个点的坐标为
,
,
,
(Ⅰ)求
,
的方程;
(Ⅱ)设
是
在第一象限上的点,
在点
处的切线
与
交于
两点,线段
的中点为
,过原点
的直线
与过点
且垂直于
轴的直线交于点
,证明:点
在定直线上.








(Ⅰ)求


(Ⅱ)设















已知圆O经过椭圆C:
的两个焦点以及两个顶点,且点
在椭圆C上.
求椭圆C的方程;
若直线l与圆O相切,与椭圆C交于M、N两点,且
,求直线l的倾斜角.





已知椭圆
的右顶点为
,上顶点为
,右焦点为
.连接
并延长与椭圆
相交于点
,且
(1)求椭圆
的方程;
(2)设经过点
的直线
与椭圆
相交于不同的两点
,直线
分别与直线
相交于点
,点
.若
的面积是
的面积的2倍,求直线
的方程.








(1)求椭圆

(2)设经过点











已知椭圆C的中心在坐标原点,焦点在x轴上,左顶点为A,左焦点为
,点
在椭圆C上,直线
与椭圆C交于E,F两点,直线AE,AF分别与y轴交于点M,N
Ⅰ
求椭圆C的方程;
Ⅱ
在x轴上是否存在点P,使得无论非零实数k怎样变化,总有
为直角?若存在,求出点P的坐标,若不存在,请说明理由.








已知椭圆
过点
,焦距长
.
(I)求椭圆
的标准方程;
(II)设不垂直于坐标轴的直线
与椭圆
交于不同的两点
、
,点
.设
为坐标原点,且
.证明:动直线
经过定点.



(I)求椭圆

(II)设不垂直于坐标轴的直线








已知椭圆
:
的离心率为
,点
在椭圆上,
为坐标原点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知点
、
、
为椭圆
上的三点,若四边形
为平行四边形,证明四边形
的面积
为定值,并求出该定值.





(Ⅰ)求椭圆

(Ⅱ)已知点







已知椭圆
的左、右焦点分别为F1、F2,离心率为
,且经过点
.
(1)求椭圆C的方程;
(2)动直线
与椭圆C相交于点M,N,椭圆C的左右顶点为
,直线
与
相交于点
,证明点
在定直线上,并求出定直线的方程.



(1)求椭圆C的方程;
(2)动直线





