- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- + 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆C:
=1(a>b>0)的离心率为
,F1,F2是椭圆的两个焦点,P是椭圆上任意一点,且△PF1F2的周长是8+2
.
(2)设圆T:(x-2)2+y2=
,过椭圆的上顶点M作圆T的两条切线交椭圆于E,F两点,求直线EF的斜率.



(2)设圆T:(x-2)2+y2=

己知椭圆
上任意一点到其两个焦点
,
的距离之和等于
,焦距为2c,圆
,
,
是椭圆的左、右顶点,AB是圆O的任意一条直径,四边形
面积的最大值为
.

(1)求椭圆C的方程;
(2)如图,若直线
与圆O相切,且与椭圆相交于M,N两点,直线
与
平行且与椭圆相切于P(O,P两点位于
的同侧),求直线
,
距离d的取值范围.










(1)求椭圆C的方程;
(2)如图,若直线






已知椭圆
的中心在原点,焦点在
轴上,且短轴长为2,离心率等于
.

(Ⅰ)求椭圆
的方程;
(Ⅱ)过椭圆
的右焦点
作直线
交椭圆
于
,
两点,交
轴于
点,若
,
,求证:
为定值.




(Ⅰ)求椭圆

(Ⅱ)过椭圆











把半椭圆
(
)与圆弧
(
)合成的曲线称作“曲圆”,其中
为
的右焦点,如图所示,
、
、
、
分别是“曲圆”与
轴、
轴的交点,已知
,过点
且倾斜角为
的直线交“曲圆”于
、
两点(
在
轴的上方).

(1)求半椭圆
和圆弧
的方程;
(2)当点
、
分别在第一、第三象限时,求△
的周长
的取值范围;
(3)若射线
绕点
顺时针旋转
交“曲圆”于点
,请用
表示
、
两点的坐标,并求△
的面积的最小值.




















(1)求半椭圆


(2)当点




(3)若射线








已知椭圆
:
,
,
分别是椭圆短轴的上下两个端点,
是椭圆的左焦点,P是椭圆上异于点
,
的点,若
的边长为4的等边三角形.
写出椭圆的标准方程;
当直线
的一个方向向量是
时,求以
为直径的圆的标准方程;
设点R满足:
,
,求证:
与
的面积之比为定值.


















已知椭圆
:
的左,右焦点分别为
,
,且经过点
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)过点
作一条斜率不为
的直线
与椭圆
相交于
两点,记点
关于
轴对称的点为
.证明:直线
经过
轴上一定点
,并求出定点
的坐标.





(Ⅰ)求椭圆

(Ⅱ)过点












已知椭圆
的左、右焦点分别为
,且该椭圆过点
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)过点
作一条斜率不为0的直线
,直线
与椭圆
相交于
两点,记点
关于
轴对称的点为点
,若直线
与
轴相交于点
,求
面积的最大值.



(Ⅰ)求椭圆

(Ⅱ)过点











