刷题宝
  • 刷题首页
题库 高中数学

题干

已知椭圆:的左,右焦点分别为,,且经过点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点作一条斜率不为的直线与椭圆相交于两点,记点关于轴对称的点为.证明:直线经过轴上一定点,并求出定点的坐标.
上一题 下一题 0.99难度 解答题 更新时间:2019-11-19 11:47:08

答案(点此获取答案解析)

同类题1

已知椭圆的一个顶点为,离心率,直线交椭圆于、两点.
(1)若直线的方程为,求弦的长;
(2)如果的重心恰好为椭圆的右焦点,求直线方程的一般式.

同类题2

如图,已知、分别是椭圆的左、右焦点,是椭圆的上顶点,点在轴负半轴上,满足是的中点,且.

(1)求椭圆的离心率;
(2)若的外接圆恰好与直线相切,求椭圆的方程.

同类题3

己知椭圆的一个顶点坐标为,离心率为,直线交椭圆于不同的两点
(Ⅰ)求椭圆的方程;
(Ⅱ)设点,当的面积为时,求实数的值.

同类题4

已知椭圆C:()的左右焦点分别为,如果C上存在一点Q,使,则椭圆的离心率的取值范围为(    )
A.B.C.D.

同类题5

已知椭圆的中心在原点,对称轴为坐标轴,短轴的一个端点与椭圆的两个焦点、组成的三角形的周长为,且,则椭圆的方程为________.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 椭圆
  • 椭圆的标准方程
  • 根据a、b、c求椭圆标准方程
  • 根据椭圆过的点求标准方程
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)