刷题首页
题库
高中数学
题干
长轴长为8,以抛物线
的焦点为一个焦点的椭圆的标准方程为( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2019-11-19 11:11:46
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,以原点
为圆心,椭圆
的长轴为直径的圆与直线
相切.
(1)求椭圆
的标准方程;
(2)已知过点
的动直线与椭圆
的两个交点为
,求
的面积S的取值范围.
同类题2
如图,已知椭圆
的离心率为
,
、
分别是椭圆的左、右焦点,点
是椭圆上任意一点,且
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)在直线
上是否存在点
Q
,使以
为直径的圆经过坐标原点
O
,若存在,求出线段
的长的最小值,若不存在,请说明理由.
同类题3
如图,已知椭圆
的上顶点为
,右焦点为
,直线
与圆
相切.
(1)求椭圆
的方程;
(2)不过点
的动直线
与椭圆
相交于
两点,且
.求证:直线
过定点,并求出该定点的坐标.
同类题4
已知椭圆
的左,右焦点
,
,上顶点为
,
,
为椭圆上任意一点,且
的面积最大值为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)若点
.
为椭圆
上的两个不同的动点,且
(
为坐标原点),则是否存在常数
,使得
点到直线
的距离为定值?若存在,求出常数
和这个定值;若不存在,请说明理由.
同类题5
给定椭圆
:
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”.若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
.
(1)求椭圆
的方程和其“准圆”方程;
(2)设椭圆短轴的一个端点为
,长轴的一个端点为
,点
是“准圆”上一动点,求三角形
面积的最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程