刷题首页
题库
高中数学
题干
已知椭圆
的中心在原点,其中一个焦点与抛物线
的焦点重合,点
在椭圆
上.
(1)求椭圆
的方程;
(2)设椭圆的左右焦点分别为
,过
的直线
与椭圆
相交于
两点,若
的面积为
,求以
为圆心且与直线
相切的圆的方程.
上一题
下一题
0.99难度 解答题 更新时间:2018-04-21 09:53:07
答案(点此获取答案解析)
同类题1
在平面直角坐标系
中,如图,已知椭圆E:
的左、右顶点分别为
、
,上、下顶点分别为
、
.设直线
的倾斜角的正弦值为
,圆
与以线段
为直径的圆关于直线
对称.
(1)求椭圆E的离心率;
(2)判断直线
与圆
的位置关系,并说明理由;
(3)若圆
的面积为
,求圆
的方程.
同类题2
以点
为圆心且与直线
相切的圆的方程是( )
A.
B.
C.
D.
同类题3
以点
为圆心的圆与直线
相切于点
,则该圆的方程为__________.
同类题4
求与圆(
x
-2)
2
+(
y
+1)
2
=4相切于点
A
(4,-1)且半径为1的圆的方程.
同类题5
把半椭圆
(
)与圆弧
(
)合成的曲线称作“曲圆”,其中
为
的右焦点,如图所示,
、
、
、
分别是“曲圆”与
轴、
轴的交点,已知
,过点
且倾斜角为
的直线交“曲圆”于
、
两点(
在
轴的上方).
(1)求半椭圆
和圆弧
的方程;
(2)当点
、
分别在第一、第三象限时,求△
的周长
的取值范围;
(3)若射线
绕点
顺时针旋转
交“曲圆”于点
,请用
表示
、
两点的坐标,并求△
的面积的最小值.
相关知识点
平面解析几何
圆与方程
圆的方程
圆的标准方程
由圆心(或半径)求圆的方程
过圆上一点的圆的切线方程