- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- + 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在平面直角坐标系xOy中,椭圆C:
的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:
交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=
.

(1)求椭圆C的标准方程;
(2)求点E的坐标.




(1)求椭圆C的标准方程;
(2)求点E的坐标.
设椭圆
的右焦点为
,离心率为
,过点
且与
轴垂直的直线被椭圆
截得的线段长为
.

(1)求椭圆
的方程;
(2)如图,
.
分别为椭圆
的左.右顶点,过点
的直线
与椭圆
交于
.
两点.若
,求直线
的方程.








(1)求椭圆

(2)如图,










如图,过椭圆
的左焦点
作
轴的垂线交椭圆于点
,点
和点
分别为椭圆的右顶点和上顶点,
.

(1)求椭圆的离心率
;
(2)过右焦点
作一条弦
,使
,若
的面积为
,求椭圆的方程.








(1)求椭圆的离心率

(2)过右焦点





已知椭圆
:
的左焦点
,离心率为
,点
为椭圆
上任一点,且
的最小值为
.
(1)求椭圆
的方程;
(2)若直线
过椭圆的左焦点
,与椭圆交于
两点,且
的面积为
,求直线
的方程.








(1)求椭圆

(2)若直线






在平面直角坐标系
中,设椭圆
的右焦点为
,右顶点为
,已知
,其中
为原点,
为椭圆的离心率.
(1)求椭圆的标准方程及离心率
;
(2)设过点
的直线
与椭圆交于点
(
不在
轴上),垂直于
的直线与
交于点
,与
轴交于点
,若
,且
,求直线
的斜率的取值范围.







(1)求椭圆的标准方程及离心率

(2)设过点













已知椭圆
的长轴长为4,离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)当
时,设
,过
作直线
交椭圆
于
、
两点,记椭圆
的左顶点为
,直线
,
的斜率分别为
,
,且
,求实数
的值.


(Ⅰ)求椭圆

(Ⅱ)当















已知中心在原点,对称轴为坐标轴的椭圆
的一个焦点F在抛物线
的准线上,且椭圆
过点
,直线与椭圆
交于A,B两个不同点.
(1)求椭圆
的方程;
(2)若直线的斜率为
,且不过点P,设直线PA,PB的斜率分别为
,
,求
的值.





(1)求椭圆

(2)若直线的斜率为




已知椭圆
的离心率为
,点A为椭圆的右顶点,点B为椭圆的上顶点,点F为椭圆的左焦点,且
的面积是
.
Ⅰ.求椭圆C的方程;
Ⅱ.设直线
与椭圆C交于P、Q两点,点P关于x轴的对称点为
(
与
不重合),则直线
与x轴交于点H,求
面积的取值范围.




Ⅰ.求椭圆C的方程;
Ⅱ.设直线






如图,在平面直角坐标系
中,已知椭圆
的离心率为
,右准线
,过椭圆的右焦点F作
轴的垂线
,椭圆的切线
与直线
分别交于
两点.

(1)求椭圆的标准方程;
(2)求
的值.










(1)求椭圆的标准方程;
(2)求
