刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,点A为椭圆的右顶点,点B为椭圆的上顶点,点F为椭圆的左焦点,且
的面积是
.
Ⅰ.求椭圆C的方程;
Ⅱ.设直线
与椭圆C交于P、Q两点,点P关于x轴的对称点为
(
与
不重合),则直线
与x轴交于点H,求
面积的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-16 09:11:28
答案(点此获取答案解析)
同类题1
已知椭圆
:
的长轴长是离心率的两倍,直线
:
交
于
,
两点,且
的中点横坐标为
.
(1)求椭圆
C
的方程;
(2)若
,
是椭圆
上的点,
为坐标原点,且满足
,求证:
,
斜率的平方之积是定值.
同类题2
已知椭圆
的短轴长为4,离心率为
,斜率不为0的直线
与椭圆恒交于
,
两点,且以
为直径的圆过椭圆的右顶点
(
,
两点不与点
重合).
(1)求椭圆的标准方程;
(2)直线
是否过定点,如果过定点,求出该定点的坐标;如果不过定点,请说明理由.
同类题3
设
是椭圆
的四个顶点,菱形
的面积与其内切圆面积分别为
,
.椭圆
的内接
的重心(三条中线的交点)为坐标原点
.
(1)求椭圆
的方程;
(2)
的面积是否为定值?若是,求出该定值,若不是,请说明理由.
同类题4
已知椭圆
的离心率为
,且过点
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
两点,
为坐标原点,
的斜率分别记为
,且
,请问椭圆
上是否存在点
使四边形
为平行四边形,若存在,求出
的坐标,若不存在,请说明理由.
同类题5
已知椭圆
的长轴是短轴的两倍,以短轴一个顶点和长轴一个顶点为端点的线段作直径的圆的周长等于
,直线
l
与椭圆
C
交于
两点.
(1)求椭圆
C
的方程;
(2)过点
O
作直线
l
的垂线,垂足为
D
.若
,求动点
D
的轨迹方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程