- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- + 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的中心为坐标原点
,焦点
在
轴上,椭圆
的短轴端点和焦点所组成的四边形为正方形,且椭圆
长轴长为
.
(1)求椭圆
的标准方程;
(2)
为椭圆
上一点,且
,求
的面积.







(1)求椭圆

(2)




已知椭圆
与
轴交于两点
,与
轴的一个交点为
,△
的面积为2.
(Ⅰ)求椭圆
的方程及离心率;
(Ⅱ)在
轴右侧且平行于
轴的直线
与椭圆
交于不同的两点
,直线
与直线
交于点
.以原点
为圆心,以
为半径的圆与
轴交于
两点(点
在点
的左侧),求
的值.






(Ⅰ)求椭圆

(Ⅱ)在















椭圆
:
,其长轴是短轴的两倍,以某短轴顶点和长轴顶点为端点的线段作为直径的圆的周长为
,直线
与椭圆交于
,
两点.
(1)求椭圆
的方程;
(2)过点
作直线
的垂线,垂足为
.若
,求点
的轨迹方程;
(3)设直线
,
,
的斜率分别为
,
,
,其中
且
.设
的面积为
.以
、
为直径的圆的面积分别为
,
,求
的取值范围.






(1)求椭圆

(2)过点





(3)设直线















如图,已知椭圆
的上顶点为
,右焦点为
,直线
与圆
相切.
(1)求椭圆
的方程;
(2)不过点
的动直线
与椭圆
相交于
两点,且
.求证:直线
过定点,并求出该定点的坐标.





(1)求椭圆

(2)不过点






