- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- + 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的左右顶点是双曲线
的顶点,且椭圆
的上顶点到双曲线
的渐近线的距离为
.
(1)求椭圆
的方程;
(2)若直线
与
相交于
两点,与
相交于
两点,且
,求
的取值范围.





(1)求椭圆

(2)若直线







设椭圆
:
的左,右焦点分别为
,
,其离心率为
,过
的直线
与C 交于
两点,且
的周长为
.
(1)求椭圆
的方程;
(2)设椭圆
的上顶点为
,证明:当
的斜率为
时,点
在以
为直径的圆上.










(1)求椭圆

(2)设椭圆






已知椭圆
:
的离心率为
,且经过点
.
(1)求椭圆
的方程;
(2)直线
与椭圆
相交于
,
两点,若
,求
(
为坐标原点)面积的最大值及此时直线
的方程.





(1)求椭圆

(2)直线








已知椭圆
的离心率为
,椭圆的左焦点为
,椭圆上任意点到
的最远距离是
,过直线
与
轴的交点
任作一条斜率不为零的直线
与椭圆交于不同的两点
、
,点
关于
轴的对称点为
.
(1)求椭圆的方程;
(2)求证:
、
、
三点共线;
(3)求
面积
的最大值.














(1)求椭圆的方程;
(2)求证:



(3)求


已知椭圆
的方程为
,离心率
,且矩轴长为4.
(1)求椭圆
的方程;
(2)已知
,
,若直线与圆
相切,且交椭圆
于
、
两点,记
的面积为
,记
的面积为
,求
的最大值.



(1)求椭圆

(2)已知










