刷题首页
题库
高中数学
题干
已知椭圆
的中心在原点
,焦点在
轴上,离心率为
,右焦点到右顶点的距离为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)是否存在与椭圆
交于
两点的直线
:
,使得
成立?若存在,求出实数
的取值范围,若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2014-05-16 08:01:48
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,其中一个焦点
F
在直线
上.
(1)求椭圆
C
的方程;
(2)若直线
和直线
与椭圆分别相交于点
、
、
、
,求
的值;
(3)若直线
与椭圆交于
P
,
Q
两点,试求
面积的最大值.
同类题2
已知椭圆
C
:
(
a
>
b
>0)的焦距为2.准线方程为
x
=3,则该椭圆的标准方程是_______;直线
与该椭圆交于
A
,
B
两点,则
AB
=_______.
同类题3
设椭圆
的左、右焦点分别为
,
,下顶点为
,
为坐标原点,点
到直线
的距离为
,
为等腰直角三角形.
(1)求椭圆
的标准方程;
(2)直线
与椭圆
交于
,
两点,若直线
与直线
的斜率之和为
,证明:直线
恒过定点,并求出该定点的坐标.
同类题4
已知椭圆
(
)的一个顶点为
,离心率为
,过点
及左焦点
的直线交椭圆于
,
两点,右焦点设为
.
(1)求椭圆的方程;
(2)求
的面积.
同类题5
已知椭圆
的左、右焦点分别为
,离心率为
,
为椭圆上一动点(异于左右顶点),若
面积的最大值为
.
(1)求椭圆
的方程;
(2)若直线
过点
交椭圆
于
两点,问在
轴上是否存在一点
,使得
为定值?若存在,求点
的坐标;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题