- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- + 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
:
(
)的左,右焦点分别为
,
,且经过点
.
(1)求椭圆
的标准方程;
(2)若斜率为
的直线与椭圆
交于
,
两点,求
面积的最大值(
为坐标原点).






(1)求椭圆

(2)若斜率为






已知椭圆
的离心率为
,过右焦点F与长轴垂直的直线与椭圆在第一象限相交于点M,
.
(1)求椭圆C的标准方程;
(2)斜率为1的直线l与椭圆相交于B,D两点,若以线段BD为直径的圆恰好过坐标原点,求直线l的方程.



(1)求椭圆C的标准方程;
(2)斜率为1的直线l与椭圆相交于B,D两点,若以线段BD为直径的圆恰好过坐标原点,求直线l的方程.
已知椭圆
的右焦点为
,长半轴长与短半轴长的比值为
.
(1)求椭圆
的方程;
(2)设经过点
的直线
与椭圆
相交于不同的两点
,
.若点
在以线段
为直径的圆上,求直线
的方程.



(1)求椭圆

(2)设经过点








已知椭圆
的离心率为
,且过点
是椭圆的左、右顶点,直线
过
点且与
轴垂直.

(1)求椭圆
的标准方程;
(2)设
是椭圆
上异于
的任意一点,作
轴于点
,延长
到点
使得
,连接
并延长交直线
于
点,
点为线段
的中点,判断直线
与以
为直径的圆
的位置关系,并证明你的结论.







(1)求椭圆

(2)设
















已知椭圆
的右焦点为
,过点
且垂直于
轴的直线与椭圆相交所得的弦长为
.
求椭圆
的方程;
过椭圆内一点
,斜率为
的直线
交椭圆于
两点,设直线
(
为坐标原点)的斜率分别为
,若对任意
,存在实数
,使得
,求实数
的取值范围.



















已知椭圆
的离心率为
,右焦点为
,以原点
为圆心,椭圆
的短半轴长为半径的圆与直线
相切.

(1)求椭圆
的方程;
(2)如图,过定点
的直线
交椭圆
于
两点,连接
并延长交
于
,求证:
.







(1)求椭圆

(2)如图,过定点







