刷题首页
题库
高中数学
题干
设
,
分别是椭圆
的左、右焦点,直线
l
过
交椭圆
C
于
A
,
B
两点,交
y
轴于
C
点,若满足
且
,则椭圆的离心率为
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2020-01-11 12:26:35
答案(点此获取答案解析)
同类题1
如图,在平面直角坐标系
中,已知
,直线
与线段
、
分别交于点
、
.
(Ⅰ)当
时,求以
为焦点,且过
中点的椭圆的标准方程;
(Ⅱ)过点
作直线
交
于点
,记
的外接圆为圆
.
① 求证:圆心
在定直线
上;
② 圆
是否恒过异于点
的一个定点?若过,求出该点的坐标;若不过,请说明理由.
同类题2
在平面直角坐标系
中已知椭圆
过点
,其左、右焦点分别为
,离心率为
.
(1)求椭圆
E
的方程;
(2)若
A
,
B
分别为椭圆
E
的左、右顶点,动点
M
满足
,且
MA
交椭圆
E
于点
P
.
(i)求证:
为定值;
(ii)设
PB
与以
PM
为直径的圆的另一交点为
Q
,问:直线
MQ
是否过定点,并说明理由.
同类题3
已知椭圆
:
的两个焦点分别为
和
,短轴的两个端点分别为
和
,点
在椭圆
上,且满足
,当
变化时,给出下列三个命题:
①点
的轨迹关于
轴对称;②
的最小值为2;
③存在
使得椭圆
上满足条件的点
仅有两个,
其中,所有正确命题的序号是__________.
同类题4
如图,在平面直角坐标系
中,椭圆
:
的离心率为
,焦点到相应准线的距离为
,
,
分别为椭圆的左顶点和下顶点,
为椭圆
上位于第一象限内的一点,
交
轴于点
,
交
轴于点
.
(1)求椭圆
的标准方程;
(2)若
,求
的值;
(3)求证:四边形
的面积为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
求椭圆的离心率或离心率的取值范围