- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- + 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
上的一点
到其左顶点
的距离为
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于
两点(
与点
不重合),若以
为直径的圆经过点
,试证明:直线
过定点.




(1)求椭圆

(2)若直线








已知椭圆
的离心率为
,其右顶点为
,下顶点为
,定点
,
的面积为
,过点
作与
轴不重合的直线
交椭圆
于
两点,直线
分别与
轴交于
两点.

(1)求椭圆
的方程;
(2)试探究
的横坐标的乘积是否为定值,说明理由.
















(1)求椭圆

(2)试探究

已知椭圆
:
的离心率为
,点
在椭圆
上,直线
过椭圆
的右焦点与上顶点,动直线
:
与椭圆
交于
,
两点,交
于
点.
(1)求椭圆
的方程;
(2)已知
为坐标原点,若点
满足
,求此时
的长度.














(1)求椭圆

(2)已知




已知椭圆
的半焦距为
,圆
与椭圆
有且仅有两个公共点,直线
与椭圆
只有一个公共点.
(1)求椭圆
的标准方程;
(2)已知动直线
过椭圆
的左焦点
,且与椭圆
分别交于
两点,试问:
轴上是否存在定点
,使得
为定值?若存在,求出该定值和点
的坐标;若不存在,请说明理由.






(1)求椭圆

(2)已知动直线









已知椭圆
的半焦距为
,圆
与椭圆
有且仅有两个公共点,直线
与椭圆
只有一个公共点.
(1)求椭圆
的标准方程;
(2)已知动直线
过椭圆
的左焦点
,且与椭圆
分别交于
两点,点
的坐标为
,证明:
为定值.






(1)求椭圆

(2)已知动直线







