刷题首页
题库
高中数学
题干
已知椭圆
的右焦点为
,长半轴长与短半轴长的比值为
.
(1)求椭圆
的方程;
(2)设经过点
的直线
与椭圆
相交于不同的两点
,
.若点
在以线段
为直径的圆上,求直线
的方程.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-11 01:52:19
答案(点此获取答案解析)
同类题1
在平面直角坐标系
中有如下正确结论:
为曲线
(
、
为非零实数,且不同时为负)上一点,则过点
的切线方程为
.
(1)已知
为椭圆
上一点,
为过点
的椭圆的切线,若直线
与直线
的斜率分别为
与
,求证:
为定值;
(2)过椭圆
上一点
引椭圆
的切线,与
轴交于点
.若
为正三角形,求椭圆
的方程;
(3)求与圆
及(2)中的椭圆
均相切的直线
与坐标轴围成的三角形的面积的取值范围.
同类题2
已知椭圆
的左焦点为
,过
且垂直于
轴的直线被椭圆截得的弦长为
.
(1)求椭圆
的方程;
(2)已知点
,过
作直线
交椭圆于
两点,证明:
.
同类题3
已知圆
的圆心是椭圆
(
)的右焦点,过椭圆的左焦点和上顶点的直线与圆
相切.
(I)求椭圆
的方程;
(II)椭圆
上有两点
、
,
、
斜率之积为
,求
的值.
同类题4
设F
1
、F
2
分别为椭圆C:
=1(a>b>0)的左、右焦点,点A为椭圆C的左顶点,点B为椭圆C的上顶点,且|AB|=
,△BF
1
F
2
为直角三角形.
(1)求椭圆C的方程;
(2)设直线y=kx+2与椭圆交于P、Q两点,且OP⊥OQ,求实数k的值.
同类题5
已知椭圆
的一个顶点为
,焦点在
轴上,其右焦点到直线
的距离为3.
(1)求椭圆
的方程;
(2)设直线
,是否存在实数
,使直线
与椭圆
有两个不同的交点
,且
,若存在,求出
的值;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程