刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,右焦点为
,以原点
为圆心,椭圆
的短半轴长为半径的圆与直线
相切.
(1)求椭圆
的方程;
(2)如图,过定点
的直线
交椭圆
于
两点,连接
并延长交
于
,求证:
.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-11 03:48:15
答案(点此获取答案解析)
同类题1
已知椭圆
过点
,且椭圆的离心率
.
(1)求椭圆的标淮方程;
(2)直线
过点
且与椭圆相交于
、
两点,椭圆的右顶点为
,试判断
是否能为直角.若能为直角,求出直线
的方程,若不行,请说明理由.
同类题2
椭圆
焦点在
轴上,离心率为
,上焦点到上顶点距离为
.
(1)求椭圆
的标准方程;
(2)直线
与椭圆
交与
两点,
为坐标原点,
的面积
,则
是否为定值,若是求出定值;若不是,说明理由.
同类题3
已知椭圆
C
:
经过点
,且离心率为
.
(1)求椭圆
C
的方程;
(2)若一组斜率为2的平行线,当它们与椭圆
C
相交时,证明:这组平行线被椭圆
C
截得的线段的中点在同一条直线上.
同类题4
如图,在直角坐标系
中有一直角梯形
,
的中点为
,
,
,
,
,以
,
为焦点的椭圆经过点
.求椭圆的标准方程。
同类题5
已知椭圆
的两个焦点分别为
,以椭圆短轴为直径的圆经过点
.
(1)求椭圆
的方程;
(2)过点
的直线
与椭圆
相交于
两点,设点
,直线
的斜率分别为
,问
是否为定值?并证明你的结论.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中存在定点满足某条件问题