刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,右焦点为
,以原点
为圆心,椭圆
的短半轴长为半径的圆与直线
相切.
(1)求椭圆
的方程;
(2)如图,过定点
的直线
交椭圆
于
两点,连接
并延长交
于
,求证:
.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-11 03:48:15
答案(点此获取答案解析)
同类题1
如图,菱形
的面积为
,斜率为
的直线
交
轴于点
,且
,以线段
为长轴,
为短轴的椭圆与直线
相交于
两点(
与
在
轴同侧).
(1)求椭圆的方程;
(2)求证:
与
的交点在定直线
上.
同类题2
已知椭圆
右顶点与右焦点的距离为
,短轴长为
,
为坐标原点.
(1)求椭圆的方程;
(2)过点
的直线
与椭圆分别交于
,
两点,求
的面积的最大值.
同类题3
设椭圆
的右顶点为
A
,下顶点为
B
,过
A
、
O
、
B
(
O
为坐标原点)三点的圆的圆心坐标为
.
(1)求椭圆的方程;
(2)已知点
M
在
x
轴正半轴上,过点
B
作
BM
的垂线与椭圆交于另一点
N
,若∠
BMN
=60°,求点
M
的坐标.
同类题4
已知椭圆
的左、右焦点为
,左右两顶点
,点
为椭圆
上任意一点,满足直线
的斜率之积为
,且
的最大值为4.
(1)求椭圆
的标准方程;
(2)已知直线
与
轴的交点为
,过
点的直线
与椭圆
相交与
两点,连接点
并延长,交轨迹
于一点
.求证:
.
同类题5
已知椭圆
的长轴长为4,且短轴长是长轴长的一半.
(1)求椭圆的方程;
(2)经过点
做直线
,交椭圆于
两点.如果
恰好是线段
的中点,问:是否存在这样的直线
,如果有求出直线
的方程,如果没有,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中存在定点满足某条件问题