刷题首页
题库
高中数学
题干
已知
分别是椭圆
的左、右焦点,离心率为
,
分别是椭圆的上、下顶点,
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于相异两点
,且满足直线
的斜率之积为
,证明:直线
恒过定点,并采定点的坐标.
上一题
下一题
0.99难度 解答题 更新时间:2018-02-14 07:09:43
答案(点此获取答案解析)
同类题1
已知椭圆
离心率为
为椭圆上一点.
(1)求
的方程;
(2)已知斜率为
,不过点
的动直线
交椭圆
于
两点.证明:直线
的斜率和为定值.
同类题2
已知中心在原点的椭圆
和抛物线
有相同的焦点
,椭圆
过点
,抛物线
的顶点为原点.
求椭圆
和抛物线
的方程;
设点
P
为抛物线
准线上的任意一点,过点
P
作抛物线
的两条切线
PA
,
PB
,其中
A
,
B
为切点.
设直线
PA
,
PB
的斜率分别为
,
,求证:
为定值;
若直线
AB
交椭圆
于
C
,
D
两点,
,
分别是
,
的面积,试问:
是否有最小值?若有,求出最小值;若没有,请说明理由.
同类题3
已知椭圆
的离心率为
,
为椭圆的左右焦点,
;
分别为椭圆的长轴和短轴的端点(如图) .若四边形
的面积为
.
(Ⅰ)求椭圆
的方程.
(Ⅱ)抛物线
的焦点与椭圆
的右焦点重合,过点
任意作一条直线
,交抛物线
于
两点. 证明:以
为直径的所有圆是否过抛物线
上一定点.
同类题4
设椭圆
的左、右焦点分别为
,
是
上任意一点,则
的周长为
A.
B.
C.
D.
同类题5
已知椭圆
:
过点
,且离心率
.
(1)求椭圆
的方程;
(2)已知斜率为
的直线
与椭圆
交于两个不同点
,点
的坐标为
,设直线
与
的倾斜角分别为
,证明:
.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
椭圆中的定点、定值