- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- + 椭圆的标准方程
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
1(a>b>0)的左、右焦点分别为F1,F2,焦距为2
.过点F1作x轴的垂线与椭圆相交,其中一个交点为P点(如图所示),若△PF1F2的面积为
,则椭圆的方程为( )





A.![]() | B.![]() |
C.![]() | D.![]() |
已知椭圆
的中心在原点,焦点
,
在
轴上,
上的点到左焦点
的距离的最大值为
,过
的直线交
于
,
两点,且
的周长为
,则椭圆
的方程为( )














A.![]() | B.![]() | C.![]() | D.![]() |
已知椭圆
:
(
)的左,右顶点分别为
,
,长轴长为
,且经过点
.
(1)求椭圆
的标准方程;
(2)若
为椭圆
上异于
,
的任意一点,证明:直线
,
的斜率的乘积为定值;
(3)已知两条互相垂直的直线
,
都经过椭圆
的右焦点
,与椭圆
交于
,
和
,
四点,求四边形
面积的取值范围.







(1)求椭圆

(2)若






(3)已知两条互相垂直的直线










椭圆
的离心率是
,过点P(0,1)做斜率为k的直线l,椭圆E与直线l交于A,B两点,当直线l垂直于y轴时
.
(1)求椭圆E的方程;
(2)当k变化时,在x轴上是否存在点M(m,0),使得△AMB是以AB为底的等腰三角形,若存在求出m的取值范围,若不存在说明理由.



(1)求椭圆E的方程;
(2)当k变化时,在x轴上是否存在点M(m,0),使得△AMB是以AB为底的等腰三角形,若存在求出m的取值范围,若不存在说明理由.
已知椭圆
的左、右焦点分别为
,离心率
,点
是椭圆上的一个动点,
面积的最大值是
.
(1)求椭圆的方程;
(2)已知点
,问是否存在直线
与椭圆
交于
两点,且
,若存在,求出直线
斜率的取值范围;若不存在,说明理由.






(1)求椭圆的方程;
(2)已知点






设P为椭圆
1(a>b>0)上任一点,F1、F2为椭圆的焦点,|PF1|+|PF2|=4,离心率为
.
(1)求椭圆的方程;
(2)若直线l:y=kx+m(≠0)与椭圆交于A、B两点,若线段AB的中点C的直线y
x上,O为坐标原点.求△OAB的面积S的最大值.


(1)求椭圆的方程;
(2)若直线l:y=kx+m(≠0)与椭圆交于A、B两点,若线段AB的中点C的直线y

已知椭圆
的离心率为
,直线
过椭圆
的右焦点.
(1)求椭圆
的方程;
(2)若不过椭圆
上顶点
的直线
与椭圆
交于
,
两点,且
.求证:直线
恒过定点,并求出该定点.




(1)求椭圆

(2)若不过椭圆








已知点P是椭圆
(
)上的一点,
,
分别是椭圆左右两个焦点,若
,且焦点三角形的面积为
,又椭圆的长轴是短轴的2倍.
(1)求出椭圆的方程;
(2)若
为钝角,求出点P横坐标的取值范围.







(1)求出椭圆的方程;
(2)若
