- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- + 椭圆的标准方程
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面直角坐标系
中,已知椭圆
过点
,焦点为
,
,点
,
.
(1)求椭圆
的方程;
(2)设
是椭圆
上一点,且
点不在坐标轴上,已知直线
与
轴交于点
,直线
与
轴交于点
.求证:
为定值,并求出该定值.







(1)求椭圆

(2)设










已知椭圆
以原点为中心,左焦点
的坐标是
,长轴长是短轴长的
倍,直线
与椭圆
交于点
与
,且
、
都在
轴上方,满足
;

(1)求椭圆
的标准方程;
(2)对于动直线
,是否存在一个定点,无论
如何变化,直线
总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由;













(1)求椭圆

(2)对于动直线



已知椭圆
的长轴长为4,离心率为
.
(I)求C的方程;
(II)设直线
交C于A,B两点,点A在第一象限,
轴,垂足为M, 连结BM并延长交C于点N.求证:点A在以BN为直径的圆上.


(I)求C的方程;
(II)设直线


已知椭圆
中心在原点,焦点在坐标轴上,直线
与椭圆
在第一象限内的交点是
,点
在
轴上的射影恰好是椭圆
的右焦点
,椭圆
的另一个焦点是
,且
.
(1)求椭圆
的方程;
(2)直线
过点
,且与椭圆
交于
,
两点,求
的面积的最大值及此时
内切圆半径.











(1)求椭圆

(2)直线







已知椭圆
:
,长半轴长与短半轴长的差为
,离心率为
.
(1)求椭圆
的标准方程;
(2)若在
轴上存在点
,过点
的直线
分别与椭圆
相交于
、
两点,且
为定值,求点
的坐标.




(1)求椭圆

(2)若在









已知点
在椭圆
:
上,
为坐标原点,直线
:
的斜率与直线
的斜率乘积为
(1)求椭圆
的方程;
(2)不经过点
的直线
:
(
且
)与椭圆
交于
,
两点,
关于原点的对称点为
(与点
不重合),直线
,
与
轴分别交于两点
,
,求证:
.








(1)求椭圆

(2)不经过点

















已知椭圆
的离心率为
,以原点为圆心,椭圆的短半轴为长为半径的圆与直线
相切,过点
的直线
与椭圆
相交于
两点.
(1)求椭圆
的方程;
(2)若原点
在以线段
为直径的圆内,求直线
的斜率
的取值范围.







(1)求椭圆

(2)若原点




在平面直角坐标系
中,已知椭圆
的离心率为
,且过点
.

(1)求椭圆
的方程;
(2)设点
,点
在
轴上,过点
的直线交椭圆
交于
,
两点.
①若直线
的斜率为
,且
,求点
的坐标;
②设直线
,
,
的斜率分别为
,
,
,是否存在定点
,使得
恒成立?若存在,求出
点坐标;若不存在,请说明理由.





(1)求椭圆

(2)设点







①若直线




②设直线









已知椭圆
的对称中心为原点
,焦点在
轴上,焦距为
,点
在该椭圆上.

(1)求椭圆
的方程;
(2)直线
与椭圆交于
两点,
点位于第一象限,
是椭圆上位于直线
两侧的动点.当点
运动时,满足
,问直线
的斜率是否为定值,请说明理由.






(1)求椭圆

(2)直线








已知椭圆
的一个焦点与抛物线
的焦点重合,点
在L上.
(1)求L的方程;
(2)直线l不过原点O且不平行于坐标轴,l与L有两个交点A,B,线段AB的中点为M,证明:OM的斜率与直线l的斜率的乘积为定值.



(1)求L的方程;
(2)直线l不过原点O且不平行于坐标轴,l与L有两个交点A,B,线段AB的中点为M,证明:OM的斜率与直线l的斜率的乘积为定值.