刷题宝
  • 刷题首页
题库 高中数学

题干

已知椭圆的离心率为,直线过椭圆的右焦点.
(1)求椭圆的方程;
(2)若不过椭圆上顶点的直线与椭圆交于,两点,且.求证:直线恒过定点,并求出该定点.
上一题 下一题 0.99难度 解答题 更新时间:2020-01-11 04:21:11

答案(点此获取答案解析)

同类题1

已知椭圆的离心率为,上顶点到直线的距离为3.
(1)求椭圆的方程;
(2)设直线过点且与椭圆相交于两点,不经过点,证明:直线的斜率与直线的斜率之和为定值.

同类题2

在△ABC中,B(-2,0),C(2,0),且△ABC的周长为.
(1)求顶点A的轨迹M的方程;
(2)过点P(2,1)作曲线M的一条弦,使弦被这点平分,求此弦所在的直线方程.

同类题3

已知椭圆的离心率为,短轴长为4.
(1)求椭圆C的标准方程.
(2)设直线l过点(2,0)且与椭圆C相交于不同的两点A、B,直线与x轴交于点D,E是直线上异于D的任意一点,当时,直线BE是否恒过x轴上的定点?若过,求出定点坐标,若不过,请说明理由.

同类题4

已知椭圆,右焦点为,动直线与圆相切于点,与椭圆交于、两点,其中点在轴右侧.

(1)若直线过点,求椭圆方程;
(2)求证:为定值.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 椭圆
  • 椭圆的标准方程
  • 根据a、b、c求椭圆标准方程
  • 椭圆中的直线过定点问题
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)