刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,直线
过椭圆
的右焦点.
(1)求椭圆
的方程;
(2)若不过椭圆
上顶点
的直线
与椭圆
交于
,
两点,且
.求证:直线
恒过定点,并求出该定点.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-11 04:21:11
答案(点此获取答案解析)
同类题1
已知椭圆
的左、右焦点分别为
,离心率为
,过椭圆
焦点且与长轴垂直的直线被椭圆
截得的弦长为4.
(1)求椭圆
的标准方程;
(2)过椭圆左顶点
A
的直线
与椭圆的另一个交点为
M
,与
y
轴交点为
P
,若点
,且
,求直线
的方程.
同类题2
在平面直角坐标系
中,
分别是椭圆
的左、右顶点(如图所示),点
在椭圆的长轴
上运动,且
.设圆
是以点
为圆心,
为半径的圆.
(1)若
,圆
和椭圆在第一象限的交点坐标为
,求椭圆的方程;
(2)若椭圆的离心率为
,过点
作互相垂直的两条直线,交椭圆于P,Q两点,若直线PQ过点M,求m的值(用含
的代数式表示);
(3)当圆
与椭圆有且仅有点
一个交点时,求
的运动范围(用含
的代数式表示).
同类题3
如图,
F
1
(﹣2,0),
F
2
(2,0)是椭圆
C
:
的两个焦点,
M
是椭圆
C
上的一点,当
MF
1
⊥
F
1
F
2
时,有|
MF
2
|=3|
MF
1
|.
(1)求椭圆
C
的标准方程;
(2)过点
P
(0,3)作直线
l
与轨迹
C
交于不同两点
A
,
B
,使△
OAB
的面积为
(其中
O
为坐标原点),问同样的直线
l
共有几条?并说明理由.
同类题4
已知椭圆
C
:
(
a
>
b
>0)的右焦点
F
(1,0),右顶点
A
,且|
AF
|=1.
(1)求椭圆
C
的标准方程.
(2)若动直线
l
:
y
=
kx
+
m
与椭圆
C
有且只有一个交点
P
,且与直线
x
=4交于点
Q
,问:是否存在一个定点
M
(
t
,0),使得
?若存在,求出点
M
的坐标;若不存在,说明理由.
同类题5
如图椭圆
的上下顶点为A、B,直线
:
,点P是椭圆上异于点A、B的任意一点,连结AP并延长交直线
于点N,连结BP并延长交直线
于点M,设AP、BP所在直线的斜率分别为
,若椭圆的离心率为
,且过点
,(1)求
的值,并求
最小值;(2)随着点P的变化,以MN为直径的圆是否恒过定点,若过定点,求出该定点坐标;若不过定点,请说明理由。
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题