刷题首页
题库
高中数学
题干
在平面直角坐标系
中,已知椭圆
的离心率为
,且过点
.
(1)求椭圆
的方程;
(2)设点
,点
在
轴上,过点
的直线交椭圆
交于
,
两点.
①若直线
的斜率为
,且
,求点
的坐标;
②设直线
,
,
的斜率分别为
,
,
,是否存在定点
,使得
恒成立?若存在,求出
点坐标;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-11 12:03:42
答案(点此获取答案解析)
同类题1
已知椭圆
的右焦点为
,且点
在椭圆
C
上.
(1)求椭圆
C
的标准方程;
(2)过椭圆
上异于其顶点的任意一点
Q
作圆
的两条切线,切点分别为
不在坐标轴上),若直线
在
x
轴,
y
轴上的截距分别为
,证明:
为定值;
(3)若
是椭圆
上不同两点,
轴,圆
E
过
,且椭圆
上任意一点都不在圆
E
内,则称圆
E
为该椭圆的一个内切圆,试问:椭圆
是否存在过焦点
F
的内切圆?若存在,求出圆心
E
的坐标;若不存在,请说明理由.
同类题2
如图所示,
分别为椭圆
的左、右两个焦点,A、B为两个顶点.已知椭圆C上的点
到
两点的距离之和为4.
(1)求椭圆C的方程和焦点坐标;
(2)过椭圆C的焦点
作AB的平行线交椭圆于P、Q两点,求弦PQ的长.
同类题3
已知点
在椭圆上
E
:
(
),点
为平面上一点,
O
为坐标原点.
(1)当
取最小值时,求椭圆
E
的方程;
(2)对(1)中的椭圆
E
,
P
为其上一点,若过点
的直线
l
与椭圆
E
相交于不同的两点
S
和
T
,且满足
(
),求实数
t
的取值范围.
同类题4
中心在原点O,焦点F
1
、F
2
在x轴上的椭圆E经过点C(2, 2),且
(I )求椭圆E的方程;
(II)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.
同类题5
过点
且与椭圆
有共同的焦点的椭圆的标准方程为
_____________
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
根据离心率求椭圆的标准方程