刷题首页
题库
高中数学
题干
已知椭圆
的一个焦点与抛物线
的焦点重合,点
在
L
上.
(1)求
L
的方程;
(2)直线
l
不过原点
O
且不平行于坐标轴,
l
与
L
有两个交点
A
,
B
,线段
AB
的中点为
M
,证明:
OM
的斜率与直线
l
的斜率的乘积为定值.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-11 02:14:20
答案(点此获取答案解析)
同类题1
已知离心率为
的椭圆
过点
.
(1)求椭圆
的方程;
(2)过点
作斜率为
直线
与椭圆相交于
两点,求
的长.
同类题2
已知椭圆
的中心在坐标原点,且经过点
,它的一个焦点与抛物线
的焦点重合.
(1)求椭圆
的方程;
(2)斜率为
的直线过点
,且与抛物线
交于
两点,设点
,
的面积为
,求
的值;
(3)若直线
过点
,且与椭圆
交于
两点,点
关于
轴的对称点为
,直线
的纵截距为
,证明:
为定值.
同类题3
已知
是椭圆
的左、右顶点,
是
上不同于
的任意一点,若
的离心率为
,则直线
的斜率之积为( )
A.
B.
C.
D.
同类题4
已知
分别是椭圆
的长轴与短轴的一个端点,
是椭圆的左、右焦点,以
点为圆心、3为半径的圆与以
点为圆心、1为半径的圆的交点在椭圆
上,且
.
(1)求椭圆
的方程;
(2)设
为椭圆
上一点,直线
与
轴交于点
,直线
与
轴交于点
,求证:
.
同类题5
如图,已知在坐标平面内,
M
、
N
是
x
轴上关于原点
O
对称的两点,
P
是上半平面内一点,△
PMN
的面积为
点
坐标为
(
为常数),
(Ⅰ)求以
M
、
N
为焦点且过点
P
的椭圆方程;
(Ⅱ)过点
B
(﹣1,0)的直线
l
交椭圆于
C
、
D
两点,交直线
x
=﹣4于点
E
,点
B
、
E
分
的比分别为
、λ
2
,求
+λ
2
的值
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中的定值问题