- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- + 椭圆的标准方程
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的一个顶点为
,离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设过椭圆右焦点的直线
交椭圆于
两点,过原点的直线
交椭圆于
两点.若
,求证:
为定值.



(Ⅰ)求椭圆

(Ⅱ)设过椭圆右焦点的直线






已知
的短轴长
,离心率为
,圆
.
(1)求椭圆
和圆
的方程;
(2)过椭圆左焦点的直线
与椭圆
交于
两点,
,若直线
于圆
交于
两点,求直线
的方程及
与
的面积之比.




(1)求椭圆


(2)过椭圆左焦点的直线










已知椭圆
的焦点到短轴的端点的距离为
,离心率为
.
(1)求椭圆
的方程;
(2)过点
的直线
交椭圆
于
两点,过点
作平行于
轴的直线
,交直线
于点
,求证:直线
恒过定点.



(1)求椭圆

(2)过点










设中心在原点,焦点在
轴上的椭圆
过点
,且离心率为
.
为
的右焦点,
为
上一点,
轴,
的半径为
.
(1)求
和
的方程;
(2)若直线
与
交于
两点,与
交于
两点,其中
在第一象限,是否存在
使
?若存在,求
的方程;若不存在,说明理由.











(1)求


(2)若直线









在平面直角坐标系
中,动圆
与圆
外切,与圆
内切.
(1)求动圆圆心
的轨迹方程;
(2)直线
过点
且与动圆圆心
的轨迹交于
、
两点.是否存在
面积的最大值,若存在,求出
的面积;若不存在,说明理由.




(1)求动圆圆心

(2)直线






