- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
在第一象限内的点
到焦点
的距离为
.
(1)若
,过点
,
的直线
与抛物线相交于另一点
,求
的值:
(2)若直线
与抛物线
相交于
,
两点,与圆
相交于
,
两点,
为坐标原点,
,试问:是否存在实数
,使得
的长为定值?若存在,求出
的值;若不存在,请说明理由.





(1)若






(2)若直线












已知抛物线
的焦点为
.
(1)若抛物线
的焦点到准线的距离为4,直线
,求直线
截抛物线
所得的弦长;
(2)过点
的直线交抛物线
于
两点,过点
作抛物线的切线,两切线相交于点
,若
分别表示直线
与直线
的斜率,且
,求
的值.


(1)若抛物线




(2)过点









