刷题首页
题库
高中数学
题干
已知椭圆C:
过点
,且离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过原点的直线
与椭圆C交于P、Q两点,且在直线
上存在点M,使得
为等边三角形,求直线
的方程。
上一题
下一题
0.99难度 解答题 更新时间:2020-02-26 07:40:42
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,过右焦点
F
与长轴垂直的直线与椭圆在第一象限相交于点
M
,
.
(1)求椭圆
C
的标准方程;
(2)斜率为1的直线
l
与椭圆相交于
B
,
D
两点,若以线段
BD
为直径的圆恰好过坐标原点,求直线
l
的方程.
同类题2
已知椭圆
的中心在原点,焦点在
轴上,短轴长和焦距都等于2,
是椭圆上的一点,且
在第一象限内,过
且斜率等于
的直线与椭圆
交于另一点
,点
关于原点的对称点为
.
(1)求椭圆
的方程;
(2)证明:直线
的斜率为定值;
(3)求
面积的最大值.
同类题3
(1)焦点在y轴上的椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.
(2)已知双曲线的一条渐近线方程是
,并经过点
,求此双曲线的标准方程.
同类题4
椭圆
:
,其长轴是短轴的两倍,以某短轴顶点和长轴顶点为端点的线段作为直径的圆的周长为
,直线
与椭圆交于
,
两点.
(1)求椭圆
的方程;
(2)过点
作直线
的垂线,垂足为
.若
,求点
的轨迹方程;
(3)设直线
,
,
的斜率分别为
,
,
,其中
且
.设
的面积为
.以
、
为直径的圆的面积分别为
,
,求
的取值范围.
同类题5
已知椭圆
:
的离心率为
,且椭圆上一点
的坐标为
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
,
两点,且以线段
为直径的圆过椭圆的右顶点
,求证:直线
恒过
轴上一定点.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据直线与椭圆的位置关系求参数或范围