- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,圆
,
是圆M内一个定点,P是圆上任意一点,线段PN的垂直平分线l和半径MP相交于点Q,当点P在圆M上运动时,点Q的轨迹为曲线E

(1)求曲线E的方程;
(2)过点D(0,3)作直线m与曲线E交于A,B两点,点C满足
(O为原点),求四边形OACB面积的最大值,并求此时直线m的方程;
(3)已知抛物线
上,是否存在直线与曲线E交于G,H,使得G,H的中点F落在直线y=2x上,并且与抛物线相切,若直线存在,求出直线的方程,若不存在,说明理由.



(1)求曲线E的方程;
(2)过点D(0,3)作直线m与曲线E交于A,B两点,点C满足

(3)已知抛物线

点M(5,3)到抛物线y=ax2(a≠0)的准线的距离为6,那么抛物线的方程是( )
A.y=12x2 | B.y=12x2或y=-36x2 |
C.y=-36x2 | D.y=![]() ![]() |
设椭圆C:
的左顶点为A,上顶点为B,已知直线AB的斜率为
,
.
(1)求椭圆C的方程;
(2)设直线
与椭圆C交于不同的两点M、N,且点O在以MN为直径的圆外(其中O为坐标原点),求
的取值范围.



(1)求椭圆C的方程;
(2)设直线


已知椭圆
的离心率为
,两焦点与短轴的一个端点的连线构成的三角形面积为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设与圆O:
相切的直线l交椭圆C于A,B两点(O为坐标原点),求△AOB面积的最大值。



(Ⅰ)求椭圆C的方程;
(Ⅱ)设与圆O:

设椭圆C:
=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为( )

A.![]() | B.![]() | C.![]() | D.![]() |
如图,圆
,
是圆M内一个定点,P是圆上任意一点,线段PN的垂直平分线l和半径MP相交于点Q,当点P在圆M上运动时,点Q的轨迹为曲线E.

(1)求曲线E的方程;
(2)已知抛物线
上,是否存在直线m与曲线E交于G,H,使得G,H中点F落在直线y=2x上,并且与抛物线相切,若直线m存在,求出直线m的方程,若不存在,说明理由.



(1)求曲线E的方程;
(2)已知抛物线
