- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间直角坐标系
- 空间向量及其运算
- + 空间向量的应用
- 直线的方向向量
- 平面的法向量
- 空间位置关系的向量证明
- 空间距离的向量求法
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,四边形
是梯形,四边形
是矩形,且平面
平面
,
,
,
,
是线段
上的动点.

(1)试确定点
的位置,使
平面
,并说明理由;
(2)在(1)的条件下,求平面
与平面
所成锐二面角的余弦值.










(1)试确定点



(2)在(1)的条件下,求平面


如图,
面
,
,
,
为
的中点.

(Ⅰ)求证:
平面
.
(Ⅱ)求二面角
的余弦值.
(Ⅲ)在线段
上是否存在点
,使得
,若存在,求出
的值,若不存在,说明理由.







(Ⅰ)求证:


(Ⅱ)求二面角

(Ⅲ)在线段



