- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间直角坐标系
- 空间向量及其运算
- + 空间向量的应用
- 直线的方向向量
- 平面的法向量
- 空间位置关系的向量证明
- 空间距离的向量求法
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=
.

(Ⅰ)求面ASD与面BSC所成二面角的大小;
(Ⅱ)设棱SA的中点为M,求异面直线DM与SB所成角的大小;
(Ⅲ)求点D到平面SBC的距离.


(Ⅰ)求面ASD与面BSC所成二面角的大小;
(Ⅱ)设棱SA的中点为M,求异面直线DM与SB所成角的大小;
(Ⅲ)求点D到平面SBC的距离.
如图,三棱柱
的底面是边长为2的正三角形,且
平面
,
是侧棱
的中点,直线
与侧面
所成的角为45°.

(Ⅰ)求二面角
的余弦值;
(Ⅱ)求点
到平面
的距离.








(Ⅰ)求二面角

(Ⅱ)求点


在三棱锥
中,
是边长为4的等边三角形,平面
平面
,
,点
为棱
的中点,点
在棱
上且满足
,已知使得异面直线
与
所成角的余弦值为
的
有两个不同的值
.

(1)求
的值;
(2)当
时,求二面角
的余弦值.
















(1)求

(2)当

