刷题首页
题库
高中数学
题干
在直三棱柱
中,
,
,
,
,
分别为
的中点,
(1)求证:
平面
;
(2)求证:平面
平面ABD;
上一题
下一题
0.99难度 解答题 更新时间:2011-03-11 05:06:26
答案(点此获取答案解析)
同类题1
如图,已知三棱柱
,平面
平面
,
,
,
,
,
分别是
,
的中点.
(1)证明:
;
(2)求直线
与平面
所成角的正弦值.
同类题2
如图,在平行六面体ABCD-A
1
B
1
C
1
D
1
中,底面ABCD是边长为a的正方形,侧棱AA
1
的长为b,∠A
1
AB=∠A
1
AD=120°.
(1)求AC
1
的长;
(2)证明:AC
1
⊥BD.
同类题3
直三棱柱
中,底面
是边长为2的正三角形,
是棱
的中点,且
.
(1)若点
为棱
的中点,求异面直线
与
所成角的余弦值;
(2)若点
在棱
上,且
平面
,求线段
的长.
同类题4
如图所示,已知
是正方形,
平面
,
.
(1)求异面直线
与
所成的角;
(2)在线段
上是否存在一点
,使
平面
?若存在,确定
点的位置;若不存在,说明理由.
同类题5
如图,在多面体
中,平面
平面
.四边形
为正方形,四边形
为梯形,且
,
是边长为1的等边三角形,M为线段
中点,
.
(1)求证:
;
(2)求直线
与平面
所成角的正弦值;
(3)线段
上是否存在点N,使得直线
平面
?若存在,求
的值;若不存在,请说明理由.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明