- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 二面角的概念及辨析
- + 求二面角
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在直角梯形
中,
,
,
,
,
,
在线段
上,
是线段
的中点,沿
把平面
折起到平面
的位置,使
平面
,则下列命题正确的编号为______.

①二面角
的余弦值为
;
②设折起后几何体的棱
的中点
,则
平面
;
③
;
④四棱锥
的内切球的表面积为
.
















①二面角


②设折起后几何体的棱




③

④四棱锥


已知四棱锥
的底面是正方形,侧棱长均相等,
是线段
上的点(不含端点),设
与
所成的角为
,
与平面
所成的角为
,二面角
的平面角为
,则( )











A.![]() | B.![]() | C.![]() | D.![]() |
四边形
中,
,且
,
为
中点,连接
,如图(1),将其沿
折起使得平面
平面
,平面
平面
,连接
,如图(2).

(1)证明:图(2)中的
四点共面;
(2)求图(2)中平面
与平面
所成锐二面角的余弦值.













(1)证明:图(2)中的

(2)求图(2)中平面


如图1,在
中,
,D,E分别为
的中点,点F为线段
上的一点,将
沿
折起到
的位置,使
,如图2.

(1)求二面角
(2)线段
上是否存在点
,使
平面
?说明理由.










(1)求二面角

(2)线段




如图,一个正
和一个平行四边形ABDE在同一个平面内,其中
,
,AB,DE的中点分别为F,G.现沿直线AB将
翻折成
,使二面角
为
,设CE中点为H.

(1)(i)求证:平面
平面AGH;
(ii)求异面直线AB与CE所成角的正切值;
(2)求二面角
的余弦值.








(1)(i)求证:平面

(ii)求异面直线AB与CE所成角的正切值;
(2)求二面角

如下图,在四棱锥
中,
面
,
,
,
,
,
,
,
为
的中点.
(1)求证:
面
;
(2)线段
上是否存在一点
,满足
?若存在,试求出二面角
的余弦值;若不存在,说明理由.











(1)求证:


(2)线段




