- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断面面是否垂直
- + 证明面面垂直
- 补全面面垂直的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在四棱锥
中,
底面
,底面
是直角梯形,
,
,
是
上的一点.

(Ⅰ)求证:平面
平面
;
(Ⅱ)如图(1),若
,求证:
平面
;
(Ⅲ)如图(2),若
是
的中点,且二面角
的余弦值为
,求直线
与平面
所成角的正弦值.









(Ⅰ)求证:平面


(Ⅱ)如图(1),若



(Ⅲ)如图(2),若






如图,菱形ABCD的边长为4,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,得到三棱锥B﹣ACD,点M是棱BC的中点,DM=2
.

(1)求证:OM∥平面ABD
(2)求证:平面DOM⊥平面ABC


(1)求证:OM∥平面ABD
(2)求证:平面DOM⊥平面ABC
如图,在四棱锥
中,
底面
,底面
是直角梯形,
,
,
是
上的一点.

(Ⅰ)求证:平面
平面
;
(Ⅱ)如图(1),若
,求证:
平面
;
(Ⅲ)如图(2),若
是
的中点,
,求二面角
的余弦值.









(Ⅰ)求证:平面


(Ⅱ)如图(1),若



(Ⅲ)如图(2),若




如图,已知E,F分别是正方形ABCD边BC、CD的中点,EF与AC交于点O,PA,NC都垂直于平面ABCD,且PA=AB=4,NC=2,M是线段PA上的一动点.
(1)求证:平面PAC⊥平面NEF;
(2)若PC∥平面MEF,试求PM∶MA的值;
(3)当M的是PA中点时,求二面角M-EF-N的余弦值.
(1)求证:平面PAC⊥平面NEF;
(2)若PC∥平面MEF,试求PM∶MA的值;
(3)当M的是PA中点时,求二面角M-EF-N的余弦值.

四棱锥P—ABCD中,ABCD为矩形,△PAD为等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点.
(1)求证:EF∥面PAD;
(2)求证:面PDC⊥面PAB;
(1)求证:EF∥面PAD;
(2)求证:面PDC⊥面PAB;

如图,四边形ABCD是正方形,PB^平面ABCD,MA^平面ABCD,PB=AB=2MA.

求证:(1)平面AMD∥平面BPC;(2)平面PMD^平面PBD.

求证:(1)平面AMD∥平面BPC;(2)平面PMD^平面PBD.
如图,矩形
所在平面垂直于三角形
所在平面,
,
,又
分别是
和
的中点.

(1)求证:
平面
;
(2)求证:平面
平面
;
(3)求异面直线
与
所成的角.








(1)求证:


(2)求证:平面


(3)求异面直线

