- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断面面是否垂直
- + 证明面面垂直
- 补全面面垂直的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD为菱形且∠DAB=60°,O为AD中点.

(Ⅰ)若PA=PD,求证:平面POB⊥平面PAD;
(Ⅱ)试问在线段BC上是否存在点M,使DM//面POB,如存在,指出M的位置,如不存在,说明理由.

(Ⅰ)若PA=PD,求证:平面POB⊥平面PAD;
(Ⅱ)试问在线段BC上是否存在点M,使DM//面POB,如存在,指出M的位置,如不存在,说明理由.
长方体
中,
,
分别是
,
的中点,
,
.

(Ⅰ)求证:
平面
;
(Ⅱ)求证:平面
平面
;
(Ⅲ)在线段
上是否存在一点
,使得二面角
为
,若存在,求
的值;若不存在,说明理由.








(Ⅰ)求证:


(Ⅱ)求证:平面


(Ⅲ)在线段





如图,菱
与四边形BDEF相交于BD,
平面ABCD,DE//BF,BF=2DE,AF⊥FC,M为CF的中点,
.
(I)求证:GM//平面CDE;
(II)求证:平面ACE⊥平面ACF.



(I)求证:GM//平面CDE;
(II)求证:平面ACE⊥平面ACF.

由四棱柱ABCDA1B1C1D1截去三棱锥C1B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.
(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.
(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.