刷题首页
题库
高中数学
题干
如图,直三棱柱
的所有棱长相等,
为
的中点.
(1)求证:
平面
;
(2)当
是
的中点时,求二面角
的正弦值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-24 09:09:50
答案(点此获取答案解析)
同类题1
如图1,四棱锥
中,
底面
,面
是直角梯形,
为侧棱
上一点.该四棱锥的俯视图和侧(左)视图如图2所示.
(1)证明:
平面
;
(2)线段
上是否存在点
,使
与
所成角的余弦值为
?若存在,找到所有符合要求的点
,并求
的长;若不存在,说明理由.
同类题2
在如图所示的几何体中,四边形
为正方形,四边形
为直角梯形,且
,
,平面
平面
,
.
(Ⅰ)求证:
平面
.
(Ⅱ)若二面角
为直二面角,
(ⅰ)求直线
与平面
所成角的大小.
(ⅱ)棱
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,请说明理由.
同类题3
已知斜三棱柱
的底面是直角三角形,
,侧棱与底面成锐角
,点
在底面上的射影
落在
边上.
(1)求证:
平面
;
(2)当
为何值时,
,且
为
的中点?
(3)当
,且
为
的中点时,若
,四棱锥
的体积为2,求二面角
的大小.
同类题4
(本题满分10分)
如图,在四棱锥S-ABCD中,底面ABCD是菱形,
SA⊥底面ABCD,M为SA的中点,N为CD的中点.
⑴证明:平面SBD⊥平面SAC;
⑵证明:直线MN//平面SBC.
同类题5
将边长为
的正方形
沿对角线
折起,使得平面
平面
,在折起后形成的三棱锥
中,给出下列四个命题:①
;②异面直线
与
所成的角为
;③二面角
余弦值为
;④三棱锥
的体积是
.其中正确命题的序号是___________.(写出所有正确命题的序号)
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
线面垂直的判定
证明线面垂直