- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断面面平行
- + 证明面面平行
- 补全面面平行的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在以
为顶点的五面体中,O为AB的中点,
平面
,
∥
,
,
,
.
(1)在图中过点O作平面
,使得
∥平面
,并说明理由;

(2)求直线DE与平面CBE所成角的正切值.








(1)在图中过点O作平面




(2)求直线DE与平面CBE所成角的正切值.
如图,在四棱锥
中,
底面
,底面
是直角梯形,
,
,
是
上的一点.

(Ⅰ)求证:平面
平面
;
(Ⅱ)如图(1),若
,求证:
平面
;
(Ⅲ)如图(2),若
是
的中点,
,求二面角
的余弦值.









(Ⅰ)求证:平面


(Ⅱ)如图(1),若



(Ⅲ)如图(2),若




如图,四边形ABCD是正方形,PB^平面ABCD,MA^平面ABCD,PB=AB=2MA.

求证:(1)平面AMD∥平面BPC;(2)平面PMD^平面PBD.

求证:(1)平面AMD∥平面BPC;(2)平面PMD^平面PBD.
如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点.

(1)求证:平面A B1D1∥平面EFG;
(2)求BC1与平面BB1C1C所成角的正切值

(1)求证:平面A B1D1∥平面EFG;
(2)求BC1与平面BB1C1C所成角的正切值
如图甲,直角梯形ABCD中,AB∥CD,
,点M、N分别在AB、CD上,且MN⊥AB,MC⊥CB,BC=2,MB=4,现将梯形ABCD沿MN折起,使平面AMND与平面MNCB垂直(如图乙)

(1)求证:AB∥平面DNC;
(2)当DN的长为何值时,二面角D-BC-N的大小为
?


(1)求证:AB∥平面DNC;
(2)当DN的长为何值时,二面角D-BC-N的大小为
