- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断面面平行
- + 证明面面平行
- 补全面面平行的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在三棱柱ABC﹣A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:
(1)B,C,H,G四点共面;
(2)平面EFA1∥平面BCHG.
(1)B,C,H,G四点共面;
(2)平面EFA1∥平面BCHG.

如图1,在矩形
中,已知
,
,点
,
分别在边
,
上,且
,将梯形
沿
折起,使
在平面
上的射影
恰好落在线段
靠近
的三等分点处,得到图2中的立体图形.
(1)
(2) 
(1)在图2中,求证:
平面
;
(2)求二面角
的大小.















(1)


(1)在图2中,求证:


(2)求二面角
