- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断面面平行
- + 证明面面平行
- 补全面面平行的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点S是正三角形ABC所在平面外一点,点D,E,F分别是SA,SB,SC的中点,则平面DEF与平面ABC的位置关系是________.
如图所示,已知正方体ABCD-A1B1C1D1.

(1)求证:平面A1BD∥平面B1D1C.
(2)若E,F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD.

(1)求证:平面A1BD∥平面B1D1C.
(2)若E,F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD.
在正方体EFGH-E1F1G1H1中,下列四对截面彼此平行的是( )
A.平面E1FG1与平面EGH1 | B.平面FHG1与平面F1H1G |
C.平面F1H1E与平面FHE1 | D.平面E1HG1与平面EH1G |
如图所示,在直三棱柱ABC-A1B1C1中,∠ABC=90°,BC=2,CC1=4,EB1=1,D,F,G分别为CC1,B1C1,A1C1的中点,

(1)求证:B1D⊥平面ABD;
(2)求证:平面EGF∥平面ABD;
(3)求平面EGF与平面ABD的距离.

(1)求证:B1D⊥平面ABD;
(2)求证:平面EGF∥平面ABD;
(3)求平面EGF与平面ABD的距离.
如图(甲),在直角梯形
中,
,
,
,且
,
,
、
、
分别为
、
、
的中点,现将
沿
折起,使平面
平面
,如图(乙).

(1)求证:平面
平面
;
(2)若
,求二面角
的余弦值.

















(1)求证:平面


(2)若


如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,M是CC1中点.
(Ⅰ)求证:平面AB1M⊥平面A1ABB1;
(Ⅱ)过点C作一截面与平面AB1M平行,并说明理由.
如图,四棱柱ABCD-A1B1C1D1中,E,F分别是AB1,BC1的中点.下列结论中,正确的是( )
A.EF⊥BB1 | B.EF∥平面ACC1A1 |
C.EF⊥BD | D.EF⊥平面BCC1B1 |
已知正四棱锥
的各条棱长都相等,且点
分别是
的中点.

(1)求证:
;
(2)在
上是否存在点
,使平面
平面
,若存在,求出
的值;若不存在,说明理由.




(1)求证:

(2)在





如图,在多面体
中,底面
为正方形,四边形
是矩形,平面
平面
.

(1)求证:平面
平面
;
(2)若过直线
的一个平面与线段
和
分别相交于点
和
(点
与点
均不重合),求证:
;
(3)判断线段
上是否存在一点
,使得平面
平面
?若存在,求
的值;若不存在,请说明理由.






(1)求证:平面


(2)若过直线








(3)判断线段




