- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断线面平行
- + 证明线面平行
- 补全线面平行的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在四棱锥P—ABCD中,AP⊥CD,AD∥BC,AB=BC=1,AD=2,E,F分别为AD,PC的中点.求证:
(1)AP∥平面BEF;
(2)平面BEF⊥平面PAC.
(1)AP∥平面BEF;
(2)平面BEF⊥平面PAC.

(13分)(2011•天津)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.

(Ⅰ)证明:PB∥平面ACM;
(Ⅱ)证明:AD⊥平面PAC;
(Ⅲ)求直线AM与平面ABCD所成角的正切值.

(Ⅰ)证明:PB∥平面ACM;
(Ⅱ)证明:AD⊥平面PAC;
(Ⅲ)求直线AM与平面ABCD所成角的正切值.
如图,在四棱锥P—ABCD中,底面ABCD是菱形,∠ABC=60°,PA=AC,PB=PD=
AC,E是PD的中点,求证:
(1)PB∥平面ACE;
(2)平面PAC⊥平面ABCD.

(1)PB∥平面ACE;
(2)平面PAC⊥平面ABCD.

如图,空间四边形ABCD中,E,F分别是AB,AD的中点,则EF与平面BCD的位置关系是





A.相交 |
B.平行 |
C.在平面内 |
D.不能确定 |