- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断线面平行
- + 证明线面平行
- 补全线面平行的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在四棱柱ABCD-A1B1C1D1中,平面ADD1A1⊥平面ABCD,四边形ABCD为矩形,AA1=AD=2AB=2,∠A1AD=60°,M,N分别是BC,AD1的中点.
(Ⅰ)求证:直线MN∥平面CC1D1D;
(Ⅱ)求平面A1CD与平面DCD1夹角的余弦值.
(Ⅰ)求证:直线MN∥平面CC1D1D;
(Ⅱ)求平面A1CD与平面DCD1夹角的余弦值.

在直三棱柱ABC-A1B1C1中,AB=AC,E是BC的中点,求证:
(Ⅰ)平面AB1E⊥平面B1BCC1;
(Ⅱ)A1C//平面AB1E.
(Ⅰ)平面AB1E⊥平面B1BCC1;
(Ⅱ)A1C//平面AB1E.

如图,在四棱锥P - ABCD中,PD⊥底面ABCD,AB∥DC,
,AD⊥CD,E为棱PD上一点,且
.

(1)求证:CD⊥AE;
(2)求证:
面
.



(1)求证:CD⊥AE;
(2)求证:

