- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 线面平行的判定
- 判断线面平行
- 证明线面平行
- 补全线面平行的条件
- 面面平行的判定
- 线面平行的性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在四棱锥
中, 平面
平面
,
.

(1)求证:
平面
;
(2)求直线
与平面
所成角的正弦值;
(3)在棱
上是否存在点
,使得
平面
?若存在, 求
的值;若不存在, 说明理由.





(1)求证:


(2)求直线


(3)在棱





已知圆锥的顶点为
,底面圆
的两条直径分别为
和
,且
,若平面
平面
.现有以下四个结论:

①
平面
;
②
;
③若
是底面圆周上的动点,则
的最大面积等于
的面积;
④
与平面
所成的角为
.
其中正确结论的个数是( )








①


②

③若



④



其中正确结论的个数是( )
A.1 | B.2 | C.3 | D.4 |
如图,
正方形
所在平面,M是
的中点,二面角
的大小为
.

(1)设l是平面
与平面
的交线,证明
;
(2)在棱
是否存在一点N,使
为
的二面角.若不存在,说明理由:若存在,求
长.






(1)设l是平面



(2)在棱



