- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间点、直线、平面之间的位置关系
- + 直线、平面平行的判定与性质
- 线面平行的判定
- 面面平行的判定
- 线面平行的性质
- 直线、平面垂直的判定与性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,PA=AD=AB=2BC=2,过AD的平面分别交PB,PC于M,N两点.

(1)求证:MN∥BC;
(2)若M,N分别为PB,PC的中点,
①求证:PB⊥DN;
②求二面角P-DN-A的余弦值.

(1)求证:MN∥BC;
(2)若M,N分别为PB,PC的中点,
①求证:PB⊥DN;
②求二面角P-DN-A的余弦值.
已知直线l,m,平面α,β,下列命题正确的是( )
A.l∥β,l⊂α⇒α∥β | B.l∥β,m∥β,l⊂α,m⊂α⇒α∥β |
C.l∥m,l⊂α,m⊂β⇒α∥β | D.l∥β,m∥β,l⊂α,m⊂α,l∩m=M⇒α∥β |
在四棱锥A-BCDE中,底面BCDE为菱形,侧面ABE为等边三角形,且侧面ABE⊥底面BCDE,O,F分别为BE,DE的中点.

(Ⅰ)求证:AO⊥CD;
(Ⅱ)求证:平面AOF⊥平面ACE;
(Ⅲ)侧棱AC上是否存在点P,使得BP
平面AOF?若存在,求出
的值;若不存在,请说明理由.

(Ⅰ)求证:AO⊥CD;
(Ⅱ)求证:平面AOF⊥平面ACE;
(Ⅲ)侧棱AC上是否存在点P,使得BP


如图,过底面是矩形的四棱锥F-ABCD的顶点F作
,使AB=2EF,若平面
平面
,点G在CD上且满足DG=GC.求证:

(1)
平面
;
(2)平面
平面
.




(1)


(2)平面


如图,在直三棱柱ABC-A1B1C1中,点M,N分别为线段A1B,B1C的中点.

(1)求证:MN∥平面AA1C1C;
(2)若∠ABC=90°,AB=BC=2,AA1=3,求点B1到面A1BC的距离.

(1)求证:MN∥平面AA1C1C;
(2)若∠ABC=90°,AB=BC=2,AA1=3,求点B1到面A1BC的距离.