- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 异面直线所成的角的概念及辨析
- + 证明异面直线垂直
- 求异面直线所成的角
- 由异面直线所成的角求其他量
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分14分)如图,在四棱锥
中,底面
为平行四边形,
,
为
的中点,
底面
.

(1)求证:
平面
;
(2)在线段
上是否存在一点
,使得
平面
?若存在,写出证明过程;若不存在,请说明理由.








(1)求证:


(2)在线段




(本小题满分13分)在四棱锥
中,底面
是正方形,
与
交于点
,
底面
,
为
的中点.

(Ⅰ)求证:
∥平面
;
(Ⅱ)求证:
;
(Ⅲ)若
在线段
上是否存在点
,使
平面
?
若存在,求出
的值,若不存在,请说明理由.










(Ⅰ)求证:


(Ⅱ)求证:

(Ⅲ)若





若存在,求出

(本题满分12分)如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在弧AB上,且OM∥A
A.![]() (1)求证:平面MOE∥平面PAC; ![]() (2)求证:平面PAC⊥平面PCB; (3)设二面角M-BP-C的大小为θ,求cosθ的值. |
给岀四个命题:
(1)若一个角的两边分别平行于另一个角的两边,则这两个角相等;
(2)a,b为两个不同平面,直线aÌa,直线bÌa,且a∥b,b∥b,则a∥b;
(3)a,b为两个不同平面,直线m⊥a,m⊥b,则a∥b;
(4)a,b为两个不同平面,直线m∥a,m∥b,则a∥b .
其中正确的是( )
(1)若一个角的两边分别平行于另一个角的两边,则这两个角相等;
(2)a,b为两个不同平面,直线aÌa,直线bÌa,且a∥b,b∥b,则a∥b;
(3)a,b为两个不同平面,直线m⊥a,m⊥b,则a∥b;
(4)a,b为两个不同平面,直线m∥a,m∥b,则a∥b .
其中正确的是( )
A.(1) | B.(2) | C.(3) | D.(4) |
(本小题满分10分)已知直角梯形ABCD和矩形CDEF所在的平面互相垂直,
//



(1)证明:
(2)设二面角
的平面角为
,求
;
(3)M为AD的中点,在DE上是否存在一点P,使得MP//平面BCE?若存在,求出DP的长;若不存在,请说明理由。






(1)证明:

(2)设二面角



(3)M为AD的中点,在DE上是否存在一点P,使得MP//平面BCE?若存在,求出DP的长;若不存在,请说明理由。